Матем.анализ 3 семестр (928016), страница 11
Текст из файла (страница 11)
Степенным рядом называется ряд вида
Степенной ряд заведомо сходится при - центр сходимости ряда.
Теорема Абеля.
1) Пусть степенной ряд сходится в точке . Тогда он абсолютно сходится в интервале
2) Пусть степенной ряд расходится в точке . Тогда он расходится в области
.
Доказательство.
-
Пусть степенной ряд сходится в точке
, тогда числовой ряд
сходится. Тогда по необходимому признаку сходимости ряда
. Тогда
.
Рассмотрим произвольное, но фиксированное .
По первому признаку сравнения числовых знакоположительных рядов ряд сходится в указанной области (сравнение с бесконечно убывающей геометрической прогрессией
. Следовательно, в области
степенной ряд абсолютно сходится.
-
Пусть степенной ряд расходится в точке
. Рассмотрим
. Если бы ряд сходился в точке x, то он по п. 1 доказательства сходился бы в точке
. Противоречие.
Замечание. Для каждой точки x константа q(x) своя. Может не найтись константы, меньшей единицы и ограничивающей сверху константы q(x) для всех точек области V.
Поэтому абсолютная сходимость есть, но равномерной сходимости степенного ряда в области V не гарантируется.
Если такая константа найдется, то гарантируется равномерная сходимость ряда.
Радиус сходимости и интервал сходимости степенного ряда.
Рассмотрим монотонно убывающую последовательность , такую, что в точке
степенной ряд
расходится. Если выбрать
, то степенной ряд будет сходиться (ряд из нулей), поэтому рассматриваемая последовательность ограничена снизу нулем. По теореме Вейерштрасса монотонно убывающая, ограниченная снизу числовая последовательность имеет предел. То есть
.
Такое число называется радиусом сходимости степенного ряда. Следовательно, степенной ряд (по теореме Абеля) абсолютно сходится в интервале
сходимости степенного ряда.
Определение радиуса и интервала сходимости степенного ряда.
Зафиксируем некоторое значение x и запишем ряд из модулей членов степенного ряда
. Это – знакоположительный числовой ряд. Применим к нему признак Даламбера или радикальный признак Коши.
Применяя признак Даламбера, имеем
Применяя радикальный признак Коши, имеем
Так определяется радиус сходимости степенного ряда.
Затем исследуется сходимость ряда на границе интервала сходимости, в точках Эти точки подставляются в исходный ряд, ряд становится обычным числовым рядом и исследуется стандартными методами для числовых рядов.
Составим ряд из модулей , применим радикальный признак Коши
.
Радиус сходимости R=5, интервал сходимости (-2, 8). Исследуем сходимость ряда на границе, подставляя точки x= -2, в исходный ряд..
В точке x = -2 имеем ряд - гармонический ряд, он расходится.
В точке x = 8 имеем ряд - сходящийся (по признаку Лейбница) знакочередующийся ряд.
Область сходимости исходного ряда (-2, 8].
Теорема. Степенной ряд равномерно сходится внутри интервала сходимости.
Доказательство. Пусть . Выберем
, например
. На интервале
и в точке x1 степенной ряд сходится абсолютно, так как этот интервал лежит внутри интервала сходимости. Тогда (точно так же, как в доказательстве теоремы Абеля оценим
,
Тогда в области степенной ряд будет сходиться равномерно по признаку Вейерштрасса (члены ряда мажорируются членами бесконечно убывающей геометрической прогрессии).
Следствие. Внутри интервала сходимости справедливы теоремы о непрерывности суммы ряда, о почленном интегрировании и дифференцировании ряда.
Теорема. При почленном дифференцировании и интегрировании степенного ряда его радиус сходимости не меняется.
Доказательство. Рассмотрим ряд из модулей членов степенного ряда (это – знакоположительный числовой ряд в конкретной точке) и определим радиус сходимости по признаку Даламбера.
Продифференцируем почленно степенной ряд , перейдем к ряду из модулей и найдем радиус сходимости по признаку Даламбера.
Таким образом, при почленном дифференцировании радиус сходимости степенного ряда не меняется. Он не меняется и при почленном интегрировании, иначе он изменился бы при почленном дифференцировании.
Лекция 15. Ряд Тейлора.
Ряд Тейлора.
Рядом Тейлора называется степенной ряд вида (предполагается, что функция
является бесконечно дифференцируемой).
Рядом Маклорена называется ряд Тейлора при , то есть ряд
.
Теорема. Степенной ряд является рядом Тейлора для своей суммы.
Доказательство. Пусть и степенной ряд сходится в интервале
. Подставим в разложение
, получим
.
Так как степенной ряд сходится равномерно внутри интервала сходимости, мы можем его дифференцировать почленно. Полученный ряд будет сходиться в том же интервале, так как радиус сходимости при дифференцировании не меняется. Его вновь можно дифференцировать почленно и т.д. Вычислим коэффициенты в степенных рядах, полученных почленным дифференцированием. =
,
Продолжая этот процесс, получим . Это – коэффициенты ряда Тейлора. Поэтому степенной ряд есть ряд Тейлора.
Следствие. Разложение функции в степенной ряд единственно.
Доказательство. По предыдущей теореме коэффициенты разложения функции в степенной ряд определяются однозначно, поэтому разложение функции в степенной ряд единственно.
Разложение в ряд Маклорена основных элементарных функций.
Запишем разложения в ряд Маклорена основных элементарных функций, вычисляя коэффициенты разложения по формуле , где
.
(интегрируя предыдущую формулу)
Пусть записано разложение функции в степенной ряд. Возникает вопрос, всегда ли это разложение (степенной ряд) сходится именно к этой функции, а не к какой-либо другой.
Теорема. Для того чтобы ряд Тейлора сходился к той функции, по которой он построен, необходимо и достаточно, чтобы остаточный член формулы Тейлора стремился к нулю при .
Доказательство. Запишем формулу Тейлора, известную из 1 семестра
Необходимость. Обозначим Sn – частичную сумму ряда Тейлора .
Если ряд Тейлора сходится к , то
. Но по формуле Тейлора
. Следовательно,
.
Достаточность. Если , то
, а
- частичная сумма ряда Тейлора. Поэтому ряд Тейлора сходится именно к функции
.
Теорема. Пусть все производные функции ограничены в совокупности одной константой.
Тогда ряд Тейлора сходится к функции
.
Доказательство. Оценим остаточный член формулы Тейлора
, так как показательная функция растет медленнее, чем n!. Поэтому (по предыдущей теореме) ряд Тейлора сходится к функции
.
В качестве примера применения теоремы рассмотрим разложение в ряд Маклорена функций sin x, cos x. Эти ряды сходятся к функциям, так как их производные ограничены в совокупности единицей на всей оси.
В разложении функции ex на отрезке [a, b] все производные функции ограничены константой eb, поэтому ряд для функции ex сходится к ней на любом конечном отрезке.
Ряды для функций sh x, ch x можно получить линейной комбинацией экспонент, следовательно, ряды для этих функций сходятся к ним на всей оси.
Рассмотрим разложение в ряд функции . Предположим, что ряд сходится к функции
. Можно, дифференцируя ряд почленно, установить справедливость соотношения
(выведите его в качестве упражнения). Решая это дифференциальное уравнение, получим
.
Применение степенных рядов.
-
Вычисление значений функций
Пример. Вычислить arctg 0.3 с точностью .
По следствию из признака Лейбница остаток числового знакочередующегося ряда оценивается модулем первого отброшенного члена.
. Из этого неравенства найдем n, n=2.
.
Если разложение – знакопостоянный ряд, то надо подобрать какой-либо мажорантный ряд с известной суммой, например, оценить сверху члены ряда членами бесконечно убывающей геометрической прогрессии и оценку суммы ряда проводить по сумме прогрессии.
-
Вычисление интегралов.
-
Решение дифференциальных уравнений.
1 способ. Представим в виде степенного ряда с неопределенными коэффициентами до
(n – заранее определено). Это разложение подставляется в левую и правую часть, и приравниваются коэффициенты при равных степенях x. Решается система алгебраических уравнений и определяются коэффициенты.
Заметим, что при дифференцировании степень понижается на единицу, поэтому в разложении нужно запасать членов на k больше n, где k – порядок дифференциального уравнения.
Разложение проводится по степеням (x - x0), если начальные условия заданы в точке x0.
В данном уравнении производится разложение в ряд Маклорена, так как начальное условие задано в нуле.
Подставляем разложения в правую и левую части уравнения .
Удерживаем в разложении члены четвертых степеней, в коэффициентах при x5 будут
2 способ. Представим в виде ряда Тейлора.