Главная » Просмотр файлов » Матем.анализ 3 семестр

Матем.анализ 3 семестр (928016), страница 8

Файл №928016 Матем.анализ 3 семестр (Лекции Галкина) 8 страницаМатем.анализ 3 семестр (928016) страница 82013-08-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Доказательство. . Пусть ряд сходится, тогда .

Необходимый признак позволяет отсеивать часть расходящихся рядов.

Достаточный признак расходимости. Если , то ряд расходится.

Доказательство (от противного). Пусть ряд сходится. Тогда по необходимому признаку сходимости ряда Противоречие с .

Пример. Ряд расходится, так как

Пример Ряд расходится, так как .

Критерий Коши сходимости ряда.

(Это – критерий Коши для последовательности частичных сумм ряда).

Для того чтобы ряд сходился (последовательность частичных сумм имела конечный предел), необходимо и достаточно, чтобы

Критерий Коши расходимости ряда. (отрицание критерия Коши)

Для того чтобы ряд расходился необходимо и достаточно, чтобы

Пример. Рассмотрим гармонический ряд

, если выбрать . Удалось для выбрать , чтобы . Следовательно, гармонический ряд расходится.

Свойства сходящихся рядов.

  1. Члены сходящегося ряда можно умножить на одно и то же число k. Полученный ряд будет сходиться, а сумма его будет в k раз больше суммы исходного ряда.

Доказательство. Для второго ряда частичная сумма будет равна . По теореме о предельном переходе в равенстве .

  1. Члены сходящегося ряда можно группировать. Полученный ряд будет сходиться, и сумма его не изменится.

Сгруппируем члены ряда, например, так

. Видно, что частичные суммы группированного ряда представляют собой подпоследовательность последовательности частичных сумм исходного ряда. Так как последовательность сходится, то и подпоследовательность сходится к тому же пределу.

  1. В сходящемся ряде можно отбросить конечное число первых членов . Полученный ряд будет сходиться, а его сумма будет меньше суммы исходного ряда на B.

Запишем частичные суммы второго ряда . По теореме о предельном переходе в равенстве .

Замечание. Ряд, полученный из исходного ряда отбрасыванием первых k членов, называется остатком ряда и обозначается

  1. Для того чтобы ряд сходился необходимо и достаточно, чтобы сходился остаток ряда. (Докажите это самостоятельно, используя доказательство свойства 3).

Поэтому сходимость ряда можно исследовать, «начиная с некоторого n».

  1. Сходящиеся ряды можно складывать (или вычитать), получая сходящийся ряд с суммой, равной сумме (или разности) сумм исходных рядов.

Рассмотрим два сходящихся ряда и . Рассмотрим ряд , где . . Переходя к пределу в равенстве, получим .

Примеры.

  1. Ряд –5+7-8+100+1+0,5+0,25+0,125+… сходится. В самом деле, отбросив первых четыре члена ряда (свойства 3,4), получим сходящуюся бесконечно убывающую геометрическую прогрессию

  2. Ряд расходится. Он представляет собой сумму двух рядов: сходящейся геометрической прогрессии (нечетные члены) и гармонического ряда (четные члены). Если бы этот ряд сходился, то, вычитая из него почленно сходящийся ряд , мы должны были бы по свойству 5 получить сходящийся ряд. А получаем расходящийся гармонический ряд. Следовательно, исходный ряд расходится.

  3. Ряд сходится. Рассмотрим сходящийся ряд . Группируем его члены

, получаем исходный ряд. Следовательно, он сходится (свойство 2), и его сумма равна 1.

Лекция 11 Знакоположительные ряды.

Числовой ряд называется знакоположительным, если все его члены – положительные (неотрицательные) числа.

Основная и довольно приятная особенность знакоположительных рядов в том, что частичные суммы ряда представляют собой неубывающую последовательность.

Поэтому достаточно проверить, что последовательность частичных сумм ограничена сверху, чтобы по теореме Вейерштрасса утверждать, что последовательность частичных сумм имеет конечный предел, т.е. ряд сходится.

На этом основаны, практически, все признаки сходимости рядов.

Ряд может сравниваться с несобственным интегралом (интегральный признак Коши), с другими рядами (признаки сравнения рядов), в частности, со сходящейся геометрической прогрессией (признак Даламбера, радикальный признак Коши).

Каждый признак можно сравнить с увеличительным стеклом. У каждого признака есть своя область применения, более широкая или более узкая (как поле зрения линзы) и своя сила. Одни признаки сильнее, позволяют различать слабо сходящиеся или слабо расходящиеся ряды, но имеют узкую область применения (например, интегральный признак Коши). Другие, наоборот, имеют широкую область применения, но довольно слабы, ряды, близкие к границе сходимости, с их помощью не различишь (например, признаки Даламбера и Коши (радикальный)).

Пока в библиотеке рядов, которые мы можем использовать для сравнения, всего два ряда: сходящийся ряд - бесконечно убывающая геометрическая прогрессия, известная еще из школы, и расходящийся гармонический ряд, полученный по критерию Коши.

Заметим, что критерий Коши (как критерий сходимости), вообще, самый сильный инструмент при исследовании сходимости ряда, но его область применимости узка.

Интегральный признак Коши, основанный на сравнении с несобственным интегралом – очень сильный признак. В самом деле, если аппроксимировать непрерывную подинтегральную функцию кусочно-постоянной, то площадь под графиком функции (интеграл) и площадь под графиком кусочно-постоянной функции будут различаться на конечное число.

Интегральный признак Коши.


Пусть при определена непрерывная, не возрастающая функция f(x), такая, что .

Тогда ряд сходится тогда и только тогда, когда сходится несобственный интеграл .

Доказательство. - это площадь под графиком функции при .

Так как (сумма площадей прямоугольников) ограничивает площадь под графиком функции снизу, а ограничивает ее сверху, то .

. Достаточность. Если интеграл сходится, то , поэтому последовательность ограничена сверху. Так как эта последовательность не убывает, то по теореме Вейерштрасса . Поэтому ряд сходится.

Необходимость. Если ряд сходится, то , а по необходимому признаку сходимости ряда при . Поэтому последовательность (неубывающая, так как ) ограничена сверху. Следовательно, по теореме Вейерштрасса , т.е. несобственный интеграл сходится.

Если ряд расходится, то и интеграл расходится и наоборот. Это легко доказывается от противного.

Поэтому говорят, что несобственный интеграл и ряд сходятся или расходятся «одновременно» , т.е. один из них сходится, то и другой сходится, если один расходится, то и другой расходится. Это понятие часто употребляют при сравнении рядов.

Пример. Применим интегральный признак к гармоническому ряду.

- интеграл расходится, поэтому и гармонический ряд расходится.

Пример. Рассмотрим «ряды Дирихле» . Название взято в кавычки, так неизвестно, рассматривал ли эти ряды Дирихле, но оно устоялось за долгие годы.

. Ясно, что интеграл сходится при p>1 и расходится при P<1. Случай p=1 рассмотрен выше (расходящийся гармонический ряд). Отсюда следует вывод

.

Интересно, что ряд , интегралы расходятся (проверьте по интегральному признаку).

Теперь становится яснее, где пролегает граница между сходящимися и расходящимися рядами. Заодно накоплена библиотека сходящихся и расходящихся рядов, которые можно использовать как эталонные при сравнении рядов. Сравнивать ряды можно с помощью признаков сравнения.

Признаки сравнения рядов.

Первый признак сравнения рядов.

Пусть выполнено неравенство . Тогда из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Замечание. В силу свойства сходящихся рядов, конечное число членов ряда не влияет на сходимость и неравенство можно проверять «начиная с некоторого n ». Поэтому эту фразу часто можно встретить в теоремах о рядах. Иногда ее просто опускают, но ее всегда надо иметь в виду.

Доказательство. 1) Пусть ряд сходится. Тогда выполнено неравенство . Поэтому последовательность частичных сумм ограничена сверху числом . Но эта последовательность не убывает. Следовательно, по теореме Вейерштрасса . Последнее неравенство справедливо в силу теоремы о предельном переходе в неравенстве.

2) Пусть ряд расходится. Если ряд сходится, то по п.1 доказательства и ряд сходится. Противоречие. Следовательно, ряд расходится.

Характеристики

Тип файла
Документ
Размер
2,46 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6534
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее