Главная » Просмотр файлов » 1625915145-5b3debabab98d9e994cc3a1bc8da0f5b

1625915145-5b3debabab98d9e994cc3a1bc8da0f5b (843876), страница 8

Файл №843876 1625915145-5b3debabab98d9e994cc3a1bc8da0f5b (Чернова 2007 - Математическая статистика) 8 страница1625915145-5b3debabab98d9e994cc3a1bc8da0f5b (843876) страница 82021-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Пусть функция g(y) такова, что 0 ̸= Dg(X1 ) < ∞,функция H(y) дифференцируемав точке a = Eg(X1 ) и её производная′′в этой точке H (a) = H (y) y=a отлична от нуля.()Тогда оценка θ∗ = H g(X) является асимптотически нормальнойоценкой для параметра θ = H (Eg(X1 )) = H(a) с коэффициентом асимптотической нормальности()2σ2 (θ) = H ′ (a) · Dg(X1 ).41§ 2. Асимптотический подход к сравнению оценокД о к а з а т е л ь с т в о.

Согласно ЗБЧ последовательность g(X) стремится к a = Eg(X1 ) по вероятности с ростом n. Функция H(y) − H(a) , y ̸= a,y−aG(y) =H ′ (a),y=aпо условию непрерывна в точке a. Поскольку сходимость по вероятности сохраняется под действием непрерывной функции, получим,pчто G(g(X)) −→ G(a) = H ′ (a).)√ (Заметим также, что по лемме 1 величина n g(X) − a слабо сходитсяк нормальному распределению N0, Dg(X1 ) . Пусть ξ — случайная величинаиз этого распределения.

Тогда)) √ ()()√ ( (n H g(X) − H(a) = n g(X) − a · G g(X) ⇒ ξ · H ′ (a).Мы использовали (в который раз?) следующее свойство слабой сходиpмости: если ξn ⇒ ξ и ηn −→ c = const, то ξn ηn ⇒ cξ. Но распределениеслучайной величины ξ · H ′ (a) как раз и есть N0, (H ′ (a))2 ·Dg(X1 ) . Поэтому()2σ2 (θ) = H ′ (a) · Dg(X1 ).П р и м е р 15.

Пусть X1 , . . . , Xn — выборка объёма n из равномерного распределения U0,θ с параметром θ > 0. Проверим, являются лиасимптотически нормальными оценки√k∗θk =(k + 1)X k , k = 1, 2, . . . ,полученные методом моментов в примере4 (с. 24).√kkПусть g(y) = (k + 1)y , H(y) = y. Тогда√∑√(∑)k(k + 1)Xikkg(Xi )∗kθk =(k + 1)X ==H.nnПри этом√√θ = H (Eg(X1 )) =kE(k + 1)X1k =k(k + 1)θkk+1.Впрочем, иначе быть не могло по определению метода моментов (верно?).Проверим другие условия теоремы 13:a = Eg(X1 ) = (k + 1)θkk+1= θk ,42ГЛАВА III. СРАВНЕНИЕ ОЦЕНОКдисперсияDg(X1 ) = E(k + 1)2 X12k − a2 = (k + 1)2θ2k2k + 1− θ2k =k2θ2k2k + 1конечна и отлична от нуля.

Функция H(y) дифференцируема в точке a :H ′ (y) =1 1−ky k ,kH ′ (a) = H ′ (θk ) =1 1−kθ̸= 0.kПо теореме 13, оценка θ∗k является АНО для θ с коэффициентом()2k2θ21θ2k =.σ2k (θ) = H ′ (a) Dg(X1 ) = 2 θ2−2k ·k2k + 12k + 1θ2Например, для θ∗1 = 2X имеем коэффициент σ21 (θ) = . Это в точности3совпадает с коэффициентом, полученным нами в примере 14 (с. 37).Осталось понять, как сравнивать асимптотически нормальные оценкии что показывает коэффициент асимптотической нормальности.Асимптотический подход к сравнению оценок. Возьмём две случайные= N0,1 и 10 ξ ⊂= N0,100 . Разброс значений у величины 10 ξвеличины: ξ ⊂гораздо больший:0, 9973 = P(|ξ| < 3) = P(|10 ξ| < 30),и дисперсия (показатель этого рассеяния) соответственно больше.То же самое показывает и коэффициент асимптотической нормальности.

Возьмём две АНО с коэффициентами 1 и 100:√√ ∗n(θ1 − θ∗ ) ⇒ N0,1 и n(θ∗2 − θ∗ ) ⇒ N0,100 .√ ∗При больших n разброс значенийвеличиныn(θ2 − θ∗ ) около нуля го√ ∗ ∗раздо больше, чем у величины n(θ1 − θ ), поскольку больше предельнаядисперсия (она же коэффициент асимптотической нормальности).Но чем меньше отклонение оценки от параметра, тем лучше. Получаеместественный способ сравнения асимптотически нормальных оценок.О п р е д е л е н и е 13. Пусть θ∗1 — АНО с коэффициентом σ21 (θ), θ∗2 —АНО с коэффициентом σ22 (θ). Говорят, что θ∗1 лучше, чем θ∗2 в смыслеасимптотического подхода, если для любого θ ∈ Θσ21 (θ) ⩽ σ22 (θ),и хотя бы при одном θ это неравенство строгое.П р и м е р 16.

Сравним между собой в асимптотическом смысле оценки в последовательности θ∗1 , θ∗2 , . . . из примера 15. Для θ∗k коэффициент43§ 3. Вопросы и упражненияθ2асимптотической нормальности имеет вид σ2k (θ) =. Коэффициент2k + 1тем меньше, чем больше k, т. е. каждая следующая оценка в этой последовательности лучше предыдущей.Оценка θ∗∞ , являющаяся «последней» оценкой в этой последовательности, могла бы быть лучше всех оценок в этой последовательности в смысле асимптотического подхода, если бы являлась асимптотически нормальной. Но если читатель решил задачу 7 к главе I или задачу 10 к главе II,он знает, что этой «последней» оценкой является X(n) , а она не асимптотически нормальна.Ещё раз напомним, что оценка θ̂ = X(n) оказывается лучше любойасимптотически нормальной оценки: «скорость» её сходимости к параметру, как показывает (10), равна n−1 в отличие от скорости n−1/2 ,которая наблюдается у любой АНО.§ 3.

Вопросы и упражнения1. Пусть X1 , . . . , Xn — выборка объёма n из равномерного распределения Uθ, θ+5 , где θ ∈ R. Сравнить оценки θ̂0 = X(n) − 5 и θ̂1 = X(1)из примера 11 (с. 29) в среднеквадратическом смысле. Сравнить с этимиоценками оценку метода моментов θ∗ = X − 2,5.2. Для показательного распределения с параметром α оценка,√полу-ченная методом моментов по k -му моменту, имеет вид: α∗k =kk!Xk.Сравнить оценки α∗k , k = 1, 2, . .

. в смысле асимптотического подхода.Доказать, что оценка α∗1 наилучшая.3. Выполнить все упражнения в тексте главы III.4. Получить утверждение теоремы Гливенко — Кантелли из утверждения и в условиях теоремы Колмогорова аналогично доказательству теоремы 12.5. Является ли оценка X +1 асимптотически нормальной оценкой дляпараметра λ распределения Пуассона Πλ ?6. Привести пример состоятельной оценки для параметра λ распределения Пуассона, которая не являлась бы АНО.7.

Дана выборка из показательного распределения с неизвестным параметром α > 0. Проверить асимптотическую нормальность оценки параметра α, полученной методом моментов по первому моменту.44ГЛАВА III. СРАВНЕНИЕ ОЦЕНОК8. Дана выборка объема n из распределения Пуассона с параметромλ > 0. Для какого параметра θ = θ(λ) оценка θ∗ = Xe−X является состоятельной оценкой? Проверить, является ли эта оценка асимптотическинормальной оценкой для того же параметра.9. Дана выборка X1 , . . . , Xn из распределения Пуассона с параметром λ > 0. Построить оценку метода моментов по первому моменту дляпараметра θ = P(X1 = 0).

Является ли эта оценка асимптотически нормальной?10. Пусть выборка X1 , . . . , Xn имеет нормальное распределениеNa, σ2 . Пусть Fn∗ (y) — эмпирическая функция распределения, a∗ — выборочная медиана:{X(m) ,если n = 2m − 1 (нечётно),a∗ =X(m) + X(m+1), если n = 2m (чётно).2a∗Доказать, что— асимптотически нормальная оценка параметра a .У к а з а н и е. Функция распределения порядковой статистики с номером m представляется в видеFX(m) (y) = P(X(m) < y) = P(Sn ⩾ m),где Sn = I(X1 < y) + . . . + I(Xn < y) — сумма независимых и одинаковораспределённых случайных величин. Представить в таком виде функцию√n−1распределения величины n(X(m) −a) при соответствующих m =,nnm=или m = + 1 и найти её предел по ЦПТ.22211.

Пусть X1 , . . . , Xn — выборка объёма n из равномерного распредеθ.ления U0, θ , где θ > 0. Доказать, что X(n) ∈ Kb , где b = b(θ) = −n+1n+1Доказать, чтоX(n) ∈ K0 . Сравнить эти оценки в среднеквадратичnном смысле.Г Л А В А IVЭФФЕКТИВНЫЕ ОЦЕНКИВ классе одинаково смещённых оценок эффективной мы назвали оценкус наименьшим среднеквадратическим отклонением. Но попарное сравнениеоценок — далеко не лучший способ отыскания эффективной оценки. Сегодня мы познакомимся с утверждением, позволяющим во многих случаях доказать эффективность оценки (если, конечно, она на самом деле эффективна). Это утверждение называется неравенством Рао — Краме́ра и говорито том, что в любом классе Kb(θ) существует нижняя граница для среднеквадратического отклонения любой оценки.

Таким образом, если найдётсяоценка, отклонение которой в точности равно этой нижней границе (самоемаленькое), то данная оценка — эффективна, поскольку у всех остальныхоценок отклонение меньшим быть не может. К сожалению, данное неравенство верно лишь для так называемых «регулярных» семейств распределений, к которым не относится, например, большинство равномерных.§ 1.

Регулярность семейства распределенийПусть X1 , . . . , Xn — выборка объёма n из параметрического семейства распределений Fθ , где θ ∈ Θ, а область Θ ⊂ R представляет собойконечный или бесконечный интервал. Пусть, как в главе II,{плотность fθ (y), если распределение абсолютно непрерывно,fθ (y) =Pθ (X1 = y),если распределение дискретно.Введём понятие носителя семейства распределений {Fθ , θ ∈ Θ}.О п р е д е л е н и е 14. Носителем параметрического семейства распределений Fθ будем называть любое множество C ⊆ R такое, что при всех= Fθ .θ ∈ Θ выполняется равенство P(X1 ∈ C) = 1 для X1 ⊂З а м е ч а н и е 9.

Характеристики

Тип файла
PDF-файл
Размер
598,29 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее