1625915145-5b3debabab98d9e994cc3a1bc8da0f5b (843876), страница 3
Текст из файла (страница 3)
Имеется вариационный ряд из примера 1:(0; 1; 1; 2; 2,6; 2,6; 2,6; 3,1; 4,6; 4,6; 6; 6; 7; 9; 9).Разобьём отрезок [0, 10] на четыре равных отрезка. Отрезку [0, 2,5)принадлежат четыре элемента выборки, отрезку [2,5, 5) — шесть, отрезку[5, 7,5) — три, и отрезку [7,5, 10] — два элемента выборки. Строим гистограмму (рис. 2). На рис. 3 — гистограмма для той же выборки, но приразбиении области на пять равных отрезков.668750,1-0123456789 10Рис. 2. Гистограмма при k = 4y-0123456789 10 yРис.
3. Гистограмма при k = 5Чем больше интервалов группировки, тем лучше: фигура, состоящаяиз более узких прямоугольников, точнее приближает истинную плотностьраспределения. С другой стороны, бессмысленно брать число интерваловk(n) порядка n: тогда в каждый интервал попадёт в среднем по однойточке и гистограмма не будет приближаться к плотности с ростом n.§ 2. Выборочные характеристики13З а м е ч а н и е 1. Справедливо следующее утверждение. Пусть плотность распределения элементов выборки является непрерывной функцией.
Если количество интервалов группировки стремится к бесконечk(n)ности таким образом, что→ 0, то имеет место сходимостьnпо вероятности гистограммы к плотности в каждой точке y .√Обычно √берут число интервалов порядка 3 n (или длину интервалапорядка c/ 3 n).Кроме гистограммы, для оценивания плотности используют так называемые ядерные оценки плотности, или оценки Розенблата — Парзена.Читатель может познакомиться с ними в учебнике [1, глава 1, §10]).Выборочные моменты. Знание моментов распределения также многоеможет сказать о его виде и свойствах. Рассмотрим выборочные аналогинеизвестных истинных моментов распределения.Пусть E ξ = EX1 = a, D ξ = DX1 = σ2 , E ξk = EX1k = mk — теоретические среднее, дисперсия, k -й момент.
В качестве их оценок используемсреднее, дисперсию и моменты выборочного распределения.Истинные моментыОценки для истинных моментовE ξ = EX1 = aX=n1 ∑X — выборочное среднееn i=1 iD ξ = DX1 = σ2S2 =n1 ∑(X −X)2 — выборочная дисперсия,n i=1 iлибоS02 =n1 ∑(Xi − X)2 — несмещённая выбоn − 1 i=1рочная дисперсияn1 ∑X k — выборочный k-й моментn i=1 iE ξk = EX1k = mkXk =Eg(ξ)g(X) =n1 ∑g(Xi )n i=1Ещё раз напомним, что все оценки в правом столбце таблицы являютсяслучайными величинами, если X1 , . . .
, Xn — набор случайных величин,а не их реализаций на одном элементарном исходе.14ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ§ 3. Состоятельность выборочных характеристикМы ввели три вида эмпирических характеристик, предназначенныхдля оценивания неизвестных теоретических характеристик распределения: эмпирическую функцию распределения, гистограмму, выборочныемоменты.
Если наши оценки удачны, разница между ними и истиннымихарактеристиками должна стремиться к нулю (например, по вероятности)с ростом объёма выборки. Такое свойство выборочных характеристик называют состоятельностью. Убедимся, что введённые нами характеристики этим свойством обладают.Свойства эмпирической функции распределения. Следующие четыреутверждения описывают поведение случайной функции Fn∗ (y).Т е о р е м а 1. Пусть X1 , . .
. , Xn — выборка из распределения Fс функцией распределения F и пусть Fn∗ — эмпирическая функция расpпределения, построенная по этой выборке. Тогда Fn∗ (y) −→ F (y) приn → ∞ для любого y ∈ R.Д о к а з а т е л ь с т в о. По определению 2n1 ∑∗Fn (y) =I(Xi < y).ni=1Случайные величины I(X1 < y), I(X2 < y), . . . независимы и одинаковораспределены, их математическое ожидание конечно:EI(X1 < y) = 1 · P(X1 < y) + 0 · P(X1 ⩾ y) = P(X1 < y) = F (y) < ∞,поэтому можно применить ЗБЧ Хинчина (а что это такое?):n∑Fn∗ (y)=I(Xi < y)i=1np−→ EI(X1 < y) = F (y).Таким образом, с ростом объёма выборки эмпирическая функция распределения сходится по вероятности к неизвестной теоретической функции распределения при любом фиксированном y ∈ R.
На самом деле,как показывает следующее утверждение, эта сходимость имеет даже «равномерный» характер. Наибольшее из расхождений между эмпирическойи теоретической функциями распределения стремится к нулю.Т е о р е м а 2 (Г л и в е н к о — К а н т е л л и). В условиях теоремы 1 psupFn∗ (y) − F (y) −→ 0 при n → ∞.y∈R§ 3. Состоятельность выборочных характеристик15Более того, в теоремах 1 и Гливенко — Кантелли имеет место сходимость не только по вероятности, но и почти наверное.Если функция распределения F непрерывна, то, как показывает следующая теорема, скорость√ сходимости к нулю в теореме Гливенко — Кантелли имеет порядок 1/ n.Т е о р е м а 3 (К о л м о г о р о в а).
Пусть X1 , . . . , Xn — выборка объёма n из распределения F с н е п р е р ы в н о й функцией распределения F,а Fn∗ — эмпирическая функция распределения. Тогда√n · sup Fn∗ (y) − F (y) ⇒ η при n → ∞,y∈Rгде случайная величина η имеет распределение Колмогорова с непрерывной функцией распределения∞∑2 2K(x) =(−1)j e−2j x при x ⩾ 0, K(x) = 0 при x < 0.j=−∞Теоремы Гливенко — Кантелли и Колмогорова мы доказывать не будем. Доказательство первой читатель может прочесть в учебнике [1].Следующие свойства эмпирической функции распределения — это хорошо знакомые нам свойства среднего арифметического n независимыхслагаемых, имеющих распределение Бернулли.Т е о р е м а 4.
Для любого y ∈ R1) EFn∗ (y) = F (y), т. е. Fn∗ (y) — н е с м е щ ё н н а я оценка для F (y);F (y)(1 − F (y))2) DFn∗ (y) =;n√3) n(Fn∗ (y)−F (y)) ⇒ N0, F (y)(1−F (y)) при F (y) ̸= 0, 1, т. е. Fn∗ (y) —а с и м п т о т и ч е с к и н о р м а л ь н а я оценка для F (y);4) величина nFn∗ (y) имеет биномиальное распределение Bn,F (y) .Д о к а з а т е л ь с т в о. Заметим снова, что I(X1 < y) имеет распределение Бернулли BF (y) (почему?), поэтомуEI(X1 < y) = F (y)иDI(X1 < y) = F (y)(1 − F (y)).Докажем свойство (1). Случайные величины I(Xi < y) одинаково распределены, поэтомуn∑EFn∗ (y)=En∑I(Xi < y)i=1n=EI(Xi < y)i=1n=nEI(X1 < y)= F (y)n(где использована одинаковая распределённость?).16ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИДокажем свойство (2).
Случайные величины I(Xi < y) независимыи одинаково распределены, поэтомуn∑DFn∗ (y)=Dn∑I(Xi < y)i=1n=DI(Xi < y)i=1n2=nDI(X1 < y)F (y)(1 − F (y))=2nn(где используется независимость?).Для доказательства свойства (3) используем ЦПТ (а что это?):)√√ ( ∑ I(Xi < y)∗n(Fn (y) − F (y)) = n− F (y) =nn∑=i=1n∑i=1I(Xi < y) − nF (y)√=nI(Xi < y) − nEI(X1 < y)√⇒ N0, DI(X1 <y) = N0, F (y)(1−F (y)) .nНаконец, свойство (4) выполнено из-за устойчивости по суммированиюбиномиального распределения (сформулировать!).
Поскольку I(Xi < y)независимы и имеют распределение Бернулли BF (y) , то их суммаnFn∗ (y) = I(X1 < y) + . . . + I(Xn < y)имеет биномиальное распределение Bn,F (y) .З а м е ч а н и е 2. Все определения терминов «оценка», «несмещённость», «состоятельность», «асимптотическая нормальность» будут даныв главе II. Но смысл этих терминов должен быть понятен уже сейчас.Свойства гистограммы. Пусть распределение F абсолютно непрерывно, f — его истинная плотность. Пусть, кроме того, число k интерваловгруппировки не зависит от n .
Случай, когда k = k(n), отмечен в замечании 1. Следующая теорема утверждает, что площадь столбца гистограммы, построенного над произвольным интервалом группировки, с ростомобъёма выборки сближается с площадью области под графиком плотности над этим же интервалом.Т е о р е м а 5. При n → ∞ для любого j = 1, . . . , k∫νjplj · fj =−→ P(X1 ∈ Aj ) = f (x) dx.nAjУ п р а ж н е н и е . Доказать теорему 5, используя (1) и ЗБЧ Бернуллидля слагаемых I(X1 ∈ Aj ), . .
. , I(Xn ∈ Aj ).17§ 3. Состоятельность выборочных характеристикСвойства выборочных моментов. Выборочное среднее X являетсянесмещённой, состоятельной и асимптотически нормальной оценкой длятеоретического среднего (математического ожидания).Т е о р е м а 6. 1. Если E|X1 | < ∞, то EX = EX1 = a.p2. Если E|X1 | < ∞, то X −→ EX√1 =(a при n →) ∞.3. Если DX1 < ∞, DX1 ̸= 0, то n X − EX1 ⇒ N0, DX1 .Д о к а з а т е л ь с т в о. Первое утверждение следует из свойств математического ожидания:EX =11(EX1 + . .
. + EXn ) = · n EX1 = EX1 = a.nnИз ЗБЧ в форме Хинчина получаем второе утверждение:X=X1 + . . . + Xn p−→ EX1 = a.nТретье утверждение есть прямое следствие ЦПТ:)√ (n X − EX1 =n∑i=1Xi − nEX1√⇒ N0,DX1 .nЗ а м е ч а н и е 3. УЗБЧ позволяет утверждать также, что приE|X1 | < ∞ имеет место сходимость п. н. X к EX1 . Такое свойство оценокназывают сильной состоятельностью.Выборочный k -й момент X k является несмещённой, состоятельнойи асимптотически нормальной оценкой для теоретического k -го момента.Т е о р е м а 7. 1. Если E|X1 |k < ∞, то EX k = EX1k = mk .p2. Если E|X1 |k < ∞, то X k −→ EX1k (= mk при n) → ∞.√3.
Если DX1k < ∞, DX1k ̸= 0, то n X k − EX1k ⇒ N0,DX k .1Выборочные дисперсии обладают следующими свойствами.Т е о р е м а 8. Пусть DX1 < ∞. 1. Выборочные дисперсии S 2 и S02являются состоятельными оценками для истинной дисперсии:pS 2 −→ DX1 = σ2 ,pS02 −→ DX1 = σ2 .2.