1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 8
Текст из файла (страница 8)
Максимальная сила мышц. Абсолютная сила, развиваемая разными мышцами, неодинакова. Она определяется: 1) поперечным сечением мышцы, 2) ее длиной, 3) типом сокращения, 4) характером сокращения.
Для сравнения силы разных мышц используют понятие относительной максимальной силы. Ее измеряют при изометрическом тетанусе небольшой продолжительности (1,5-5 с) и выражают в килограммах (кг) или ньютонах (Н) на площадь поперечного сечения. Этот показатель определяется числом миофибрилл на площади поперечного сечения и количеством поперечных мостиков, т.е. исходной длиной саркомера, точнее толстого миозинового филамента. Максимальная сила у разных мышц разных животных достигает верхнего предела в 4-6 кг/см2, хотя имеются мышцы и со значительно меньшей силой. Очень большую силу развивает аддуктор устрицы – 12 кг/см2. В то же время сердечная мышцы крысы развивает силу всего до 0,016 кг/см2. В относительном масштабе максимальная сила целой мышцы ниже таковой отдельного мышечного волокна (на единицу площади сечения).
4.4. ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ И СВОЙСТВА ГладкиХ мышц.
Классификация гладких мышц. Висцеральные гладкие мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулытиунитарным относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцеральных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Благодаря плотным контактам между соседними миоцитами — нексусам, потенциалы действия и медленные волны деполяризации распространяются с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.
Строение гладких мышц. Гладкие мышцы состоят из клеток веретенообразной формы, средняя длина которых 100 мкм, а диаметр 3 мкм. Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Гладкие мышечные клетки содержат миофиламенты актина и миозина, которые располагаются здесь менее упорядоченно, чем в волокнах скелетной мышцы. Саркоплазматическая сеть в гладкой мышце менее развита, чем в скелетной.
Иннервация гладких мышц. Висцеральная гладкая мышца имеет двойную иннервацию — симпатическую и парасимпатическую, функция которой заключается в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого — уменьшает. В некоторых органах, например кишечнике, стимуляция адренергических нервов уменьшает, а холинергических — увеличивает мышечную активность; в других, например, сосудах, норадреналин усиливает, а АХ снижает мышечный тонус. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса скелетной мышцы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холинергических нейронов имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие гладкие мышечные клетки. Клетки, лишенные непосредственных контактов с варикозами, активируются потенциалами действия, распространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.
Нервно-мышечная передача. Возбуждающее влияние адренергических или холинергических нервов электрически проявляется в виде отдельных волн деполяризации. При повторной стимуляции эти потенциалы суммируются, и по достижении пороговой величины возникает ПД. Тормозящее влияние адренергических или холинергических нервов проявляется в виде отдельных волн гиперполяризации, называемых тормозными постсинаптическими потенциалами (ТПСП). При ритмической стимуляции ТПСП суммируются. Возбуждающие и тормозные постсинаптические потенциалы наблюдаются не только в мышечных клетках, контактирующих с варикозами, но и на некотором расстоянии от них. Это объясняется тем, что постсинаптические потенциалы передаются от клетки к клетке через нексусы или посредством диффузии медиатора из мест его выделения.
Функции и свойства гладких мышц. Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол.
В периоды состояния относительного покоя величина мембранного потенциала в среднем равна — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала величиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжительность ПД 50—250 мс; встречаются ПД различной формы. В некоторых гладких мышцах, например мочеточника, желудка, лимфатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках миокарда. Ионная природа ПД гладкой мышцы определяется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропускают не только ионы Са2+, но и другие двухзарядные ионы (Bа2+, Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокирование кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и тонуса сосудов при лечении больных гипертонической болезнью.
Автоматия. Многим гладким мышцам свойственна спонтанная, автоматическая активность. Для нее характерно медленное снижение мембранного потенциала покоя, которое при достижении определенного уровня сопровождается возникновением ПД. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.
Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.
Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы.
Механизм сокращения. В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде, чем миозин гладкой мышцы сможет проявлять свою АТФ-азную активность, он должен быть фосфорилирован. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент — киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является присоединение Са2+ к тропонину.
Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов. Норадреналин действует на α- и β-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.
АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.
Проведение возбуждения по гладкой мышце. В отличие от того, что имеет место в скелетных мышцах, в гладких потенциал действия, возникающий в одном волокне, может распространяться на соседние волокна. Обусловлено это тем, что в мембране гладкомышечных клеток в области контактов с соседними имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко переходят на соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца сходна с сердечной. Отличие заключается только в том, что в сердце от одной клетки возбуждается вся мышца, а в гладких мышцах ПД, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое зависит от силы приложенного стимула.
Другая существенная особенность гладких мышц заключается в том, что распространяющийся ПД возникает в них только в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. Эта "критическая зона" имеет диаметр около 100 мк, что соответствует 20-30 параллельно лежащим клеткам. Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 15 см/сек. т.е. значительно меньше, чем в скелетной мышце.
Так же, как и в скелетной мускулатуре, в гладкой потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется с помощью Са++. Однако в гладкомышечных волокнах саркоплазматический ретикулюм плохо выражен, поэтому ведущую роль в механизме возникновения сокращения отводят тем ионам Са++, которые проникают внутрь мышечного волокна во время генерации ПД.
При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Латентный период сокращения ее значительно больше, чем скелетной, достигая 0,25-1 сек. Продолжительность самого сокращения тоже велика - до 1 минуты. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре с той же скоростью, что и волна возбуждения (2-15 см/сек). Но эта медленность сократительной активности сочетается с большой силой сокращения гладкой мышцы. Так, мускулатура желудка птиц способная поднимать 2 кг на 1 кв.мм. своего поперечного сечения.
Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (10-12 в мин) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком сокращении очень низки.
Способность к автоматии гладких мышц присуща их мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладко мышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных от нервных элементов. На все внешние воздействия гладкая мышца реагирует изменением частоты спонтанной ритмики, следствием чего являются сокращения или расслабления мышцы.
Раздражители гладких мышц. Одним из важных физиологически адекватных раздражителей гладких мышц является их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение распространяющегося ПД. В результате мышца сокращается.