1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 4
Текст из файла (страница 4)
Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.
Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.
Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.
Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са++, в других - для Mg+. Исследования механизмов изменения проницаемости мембран продолжаются.
В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na+, поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны для Na+ также резко снижается.
Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K+, которая начинает возрастать позже возрастания проводимости для Na+. Увеличение относительно медленного выхода K+ из клетки в фазу снижения проводимости для Na+ вызывает реполяризацию мембраны.
Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.
Условия возникновения возбуждения. Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео ) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.
Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации ( Ео <= Eк)
Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.
2. 3. Параметры возбудимости ткани: порог, полезное время и хронаксия, критический наклон, лабильность.
Зависимость пороговой силы стимула от его длительности. Как уже указывалось, пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности. В особенно четкой форме эта зависимость проявляется при использовании в качестве раздражителя прямоугольных толчков постоянного тока. Полученная в таких опытах кривая получила название "кривой силы-времени" (рис. 3). Она была изучена Гоорвегом, Вейсом и Лапиком в начале века. Из рассмотрения этой кривой прежде всего следует, что ток ниже некоторой минимальной величины или напряжения не вызывает возбуждения, как бы длительно он не действовал. Минимальная сила тока, способная вызвать возбуждение, названа Лапиком реобазой. Наименьшее время, в течение которого должен действовать раздражающий стимул, называют полезным временем. Усиление тока приводит к укорочению минимального времени раздражения, но не беспредельно. При очень коротких стимулах кривая силы-времени становится параллельной оси координат. Это означает, что при таких кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения.
Рис. 3. Кривая "силы-времени Гоорвега - Вейса
Определение полезного времени практически затруднено, так как точка полезного времени находится на участке кривой, переходящей в параллельную. Поэтому Лапик предложил использовать полезное время двух реобаз - хронаксию. Ее точка находится на самом крутом участке кривой Гоорвега-Вейса. Хронаксиметрия получила широкое распространение как в эксперименте, так и в клинике для диагностики повреждений волокон двигательных нервов.
Таким образом, второй параметр возбудимости тканей - полезное время (хронаксия).
Зависимость порога от крутизны нарастания силы раздражителя. Величина порога раздражения нерва или мышцы зависит не только от длительности стимула, но и от крутизны нарастания его силы. Порог раздражения имеет наименьшую величину при толчках тока прямоугольной формы, характеризующихся максимально быстрым нарастанием тока. Если же вместо таких стимулов применять линейно или экспоненциально нарастающие стимулы, пороги оказываются увеличенными и тем больше, чем медленнее нарастает ток. При уменьшении крутизны нарастания тока ниже некоторой минимальной величины (т.н. критический наклон) ПД вообще не возникает, до какой бы конечной силы не увеличивался ток.
Такое явление приспособления возбудимой ткани к медленно нарастающему раздражителю получило название аккомодация. Чем выше скорость аккомодации, тем более круто должен нарастать стимул, чтобы не утратить своего раздражающего действия. Порог тем выше, чем меньше критический наклон. Аккомодация к медленно нарастающему току обусловлена тем, что за время действия этого тока в мембране успевают развиться процессы, препятствующие возникновению ПД.
Дело в том, что деполяризация мембраны одновременно приводит к началу двух процессов: одного - быстрого, ведущего к повышению натриевой проницаемости и возникновению ПД, а другого - медленного, приводящего к инактивации натриевой проницаемости и к окончанию возбуждения. При крутом нарастании стимула Na-активация успевает достичь значительной величины прежде, чем развивается Na-инактивация. В случае медленного нарастания силы тока на первый план выступают процессы инактивации, приводящие к повышению порога и снижению амплитуды ПД. Все агенты, усиливающие или ускоряющие инактивацию, увеличивают скорость аккомодации.
В лаборатории показателем скорости аккомодации является та наименьшая крутизна нарастания тока, при которой стимул еще сохраняет способность вызывать ПД. Эту минимальную крутизну называют критическим наклоном. Его выражают или в абсолютных единицах (мА/сек), или в относительных (как отношение пороговой силы того постепенно нарастающего тока, который еще способен вызывать возбуждение, к реобазе прямоугольного толчка тока).
Таким образом, третий параметр возбудимости - критический наклон.
Четвертый параметр возбудимости - лабильность (функциональная подвижность). Под функциональной подвижностью понимают скорость протекания элементарных физиологических реакций, с которой система успевает перейти от состояния возбуждения к состоянию покоя. Иначе говоря, чем большее число раз в единицу времени система способна прийти в состояние возбуждения, тем ее функциональная подвижность выше. Поскольку каждая система обладает своей длительностью возбуждения, т.е. интервалом времени, в течение которого оно существует, то подвижность разных структур неодинакова. Лабильность измеряется максимальным числом импульсов, которое ткань может воспроизвести в соответствии с частотой раздражения и зависит от длительности рефрактерности.
Сравнительная характеристика возбудимости разных тканей. Самой высокой возбудимостью по всем параметрам обладает нервная ткань, на втором месте - скелетная мускулатура, на третьем месте - гладкая мускулатура, и, наконец, наименее всего возбудимы секреторные клетки.
2-4. Сравнительная характеристика локального потенциала и потенциала действия. Закон "Все или ничего". Фазовые изменения возбудимости нерва во время возбуждения (потенциала действия), их механизм.
Возникновение и развитие местного потенциала отличается определенными и специфическими особенностями:
1. Местный потенциал возникает при действии подпороговых раздражителей малой силы.
2. Амплитуда местного потенциала градуально зависит от силы раздражителя – чем сильнее раздражение, тем больше амплитуда потенциала.
3. Продолжительность местного потенциала непостоянна и зависит от силы и длительности раздражителя. Чем сильнее и продолжительнее раздражение, тем дольше сохраняется местный потенциал.
4. У местного потенциала отсутствует латентный период – он возникает практически сразу после воздействия раздражителя.
5. Участок мембраны, в границах которого возникает местный потенциал, переходит в состояние повышенной возбудимости.
6. Местные потенциалы могут суммироваться. Если на фоне местного потенциала нанести новое подпороговое раздражение, возникший на второе раздражение ответ накладывается на первый, и общий суммарный эффект от этого увеличивается
Закон "все или ничего". При изучении зависимости эффектов раздражения от силы приложенного стимула был установлен т.н. закон "все или ничего". Согласно этому закону, под пороговые раздражения не вызывают возбуждения ("ничего"), при пороговых же стимулах возбуждение сразу приобретает максимальную величину ("все"), и уже не возрастает при дальнейшем усилении раздражителя.
Долгое время закон "все или ничего" неправильно интерпретировался как общий принцип реагирования возбудимых тканей. Предполагали, что "ничего" означает полное отсутствие ответа на под пороговый стимул, а "все" рассматривалось как проявление полного исчерпания возбудимым субстратом его потенциальных возможностей. Дальнейшие исследования, в особенности микроэлектродные, показали, что эта точка зрения не соответствует действительности. Выяснилось, что при под пороговых силах возникает местное не распространяющееся возбуждение (локальный ответ). Вместе с тем оказалось, что "все" также не характеризует того максимума, которого может достигнуть ПД. В живой клетке существуют процессы, активно приостанавливающие деполяризацию мембраны. Если каким-либо воздействием на нервное волокно, например, наркотиками, ядами, ослабить входящий Na-ток, обеспечивающий генерацию ПД, то он перестает подчиняться правилу "все или ничего" - его амплитуда начинает градуально зависеть от силы стимула. Поэтому "все или ничего" рассматривается сейчас не как всеобщий закон реагирования возбудимого субстрата на раздражитель, а лишь как правило, характеризующее особенности возникновения ПД в данных конкретных условиях.