Главная » Просмотр файлов » 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2

1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 5

Файл №827859 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (Савченков - Курс лекций по физиологии) 5 страница1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859) страница 52021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Изменения возбудимости при возбуждении. Возникновение в нервном или мышечном волокне ПД сопровождается многофазными изменениями возбудимости. Для их изучения нерв или мышцу подвергают действию двух коротких электрических стимулов, следующих друг за другом с определенным интервалом. Первый называется раздражающим, второй - тестирующим. Регистрация возникающих в ответ на эти раздражения ПД позволила установить важные факты



Рис. 4. Сопоставление одиночного возбуждения (/) с фазами возбудимости (//): а — мембранный потенциал (исходная возбудимость), б — локальный ответ, или ВПСП (повышенная возбудимость), в — потенциал действия (абсолютная и относительная рефрактерность), г — следовая деполяризация (супернормальная возбудимость), д — следовая гиперполяризация (субнормальная возбудимость)



Во время локального ответа возбудимость повышена, так как мембрана деполяризована и разность между Е0 и Ек падает. Периоду же возникновения и развития пика потенциала действия соответствует полное исчезновение возбудимости, получившее название абсолютной рефрактерности (невпечатлительности). В это время тестирующий стимул не способен вызвать новый ПД, как бы сильно ни было это раздражение. Длительность абсолютной рефрактерности примерно совпадает с длительностью восходящей ветви ПД. В быстро проводящих нервных волокнах она составляет 0,4-0,7 мсек. В волокнах мышцы сердца - 250-300 мсек. Вслед за абсолютной рефрактерностью начинается фаза относительной рефрактерности , которая длится 4-8 мсек. Она совпадает с фазой реполяризации ПД. В это время возбудимость постепенно возвращается к первоначальному уровню. В этот период нервное волокно способно ответить на сильное раздражение, но амплитуда ПД будет резко снижена.

Согласно ионной теории Ходжкина-Хаксли, абсолютная рефрактерность обусловлена вначале наличием максимальной натриевой проницаемости, когда новый стимул не может что-то изменить или добавить, а затем развитием натриевой инактивации, закрывающей Na-каналы. Вслед за этим происходит снижение натриевой инактивации, в результате чего постепенно восстанавливается способность волокна генерировать ПД. Это - состояние относительной рефрактерности.

Относительная рефрактерная фаза сменяется фазой повышенной (супернормальной) возбудимости, совпадающей по времени с периодом следовой деполяризации. В это время разность между Ео и Ек ниже исходной. В двигательных нервных волокнах теплокровных животных длительность супернормальной фазы составляет 12-30 мсек.

Период повышенной возбудимости сменяется субнормальной фазой , которая совпадает со следовой гиперполяризацией. В это время разница между мембранным потенциалом (Ео) и критическим уровнем деполяризации (Ек) увеличивается. Длительность этой фазы составляет несколько десятков или сотен мсек.



2-5. Действие постоянного тока на ткань: полярный закон, электротон, катодическая депрессия



Полярный закон действия тока. При раздражении нерва или мышцы постоянным током возбуждение возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом, причем порог замыкательного удара меньше, чем размыкательного. В области приложения к поверхности ткани анода (+) положительный потенциал на наружной поверхности мембраны возрастает, т.е. в этом участке происходит гиперполяризация мембраны, что не способствует возбуждению, а, наоборот, ему препятствует. В том же участке, где к мембране приложен катод (-), положительный потенциал наружной поверхности снижается, происходит деполяризация, и если она достигает критической величины - в этом месте возникает ПД.

Изменение МП возникают не только непосредственно в точках приложения к нервному волокну катода и анода, но и на некотором расстоянии от них, но величина этих сдвигов убывает по мере удаления от электродов. Изменения МП под электродами носят название электротонических (соответственно катэлектротон и анэлектротон), а за электродами - периэлектротонических (кат- и ан-периэлектротон).

Увеличение МП под анодом (пассивная гиперполяризация) не сопровождается изменением ионной проницаемости мембраны даже при большой силе приложенного тока. Поэтому при замыкании постоянного тока возбуждение под анодом не возникает. В отличие от этого, уменьшение МП под катодом (пассивная деполяризация) влечет за собой кратковременное повышение проницаемости для Na, и если она достигает критического уровня, возникает возбуждение.

Механизм возникновения возбуждения под анодом при размыкании. В момент включения тока под анодом мембранный потенциал возрастает - происходит гиперполяризация. При этом разница между Ео и Ек растет, и для того, чтобы сдвинуть МП до критического уровня, нужна большая сила. При выключении тока (размыкание) исходный уровень Ео восстанавливается. Казалось бы, в это время нет условий для возникновения возбуждения. Но это справедливо только для того случая, если действие тока продолжалось очень короткое время (менее 100 мсек.). При длительном действии тока начинает меняться сам критический уровень деполяризации - он растет. И, наконец, возникает момент, когда новый Ек становится равным старому уровню Ео. Теперь при выключении тока возникают условия для возбуждения, ибо мембранный потенциал становится равным новому критическому уровню деполяризации. Величина ПД при размыкании всегда больше, чем при замыкании.

Лекция 3. Механизмы проведения возбуждения

3-1. Нервное волокно: классификация, механизм проведения возбуждения по мякотным и безмякотным волокнам, законы проведения возбуждения по нерву.

Законы проведения возбуждения по нервам.

1. Закон физиологической непрерывности. Перерезка, перевязка, а также любое другое воздействие, нарушающее целость мембраны (физиологическую, а не только анатомическую), создают непроводимость. То же возникает при тепловых и химических воздействиях.

2. Закон двустороннего проведения. При нанесении раздражения на нервное волокно возбуждение распространяется по нему в обеих направлениях ( по поверхности мембраны - во все стороны) с одинаковой скоростью. Это доказывается опытом Бабухина и подобными ему.

3. Закон изолированного проведения. В нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходят с одного волокна на другое. Это очень важно, так как обеспечивает точную адресовку импульса. Связано это с тем, что электрическое сопротивление миелиновых и швановской оболочек, а также межклеточной жидкости значительно больше, чем сопротивление мембраны нервных волокон.

Классификация нервных волокон. Как только в какой-либо точке нервного или мышечного волокна возникает ПД и этот участок приобретает отрицательный заряд, между возбужденными и соседними покоящимися участками волокна возникает электрический ток. В данном случае возбужденный участок мембраны действует на соседние участки как катод постоянного тока, вызывая их деполяризацию и генерируя локальный ответ. Если величина локального ответа превысит Ек мембраны, возникает ПД. В результате наружная поверхность мембраны заряжается отрицательно на новом участке. Таким способом волна возбуждения распространяется вдоль всего волокна со скоростью около 0,5-3 м/сек.

Скорость распространения волны возбуждения – нервного импульса – неодинакова у разных нейронов. Для нервных волокон она определяется главным образом диаметром волокна – чем больше диаметр волокна, тем скорость проведения выше.

Кроме того, скорость проведения возбуждения зависит от того, принадлежит ли нервное волокно к мякотным (миелинизированным) или является безмякотным (немиелинизированным) волокном. Оболочка жироподобного вещества миелина служит хорошим изолятором, поэтому распространение волны возбуждения имеет разную скорость в этих типах волокон.

Оболочка миелина в продольном направлении примерно через 1 мм имеет разрывы, называемые перехватами Ранвье. Вследствие электроизолирующих свойств миелина, в тех участках волокна, где он имеется, катионы Na+ в нервное волокно не поступают. Следовательно, возбуждение вдоль миелинизированного участка распространяется особым электротоническим образом – почти без задержки, скачком. Такой способ получил название сальтаторного. Задержка происходит только в области перехвата Ранвье, где электротонический потенциал вначале должен достичь пороговой величины и только затем может вызвать перезарядку мембраны, т.е. вызвать возбуждение.



Скорость проведения возбуждения в нервных волокнах разного диаметра

Группа

Функция (выборочно)

Средний

диаметр, мкм

Средняя скорость

проведения, м/с

I

Первичные афференты мышечных веретен и афференты от сухожильных органов

13

75

II

Кожные механорецепторы

9

55

III

Мышечные сенсоры глубокого давления

3

11

IV

Немиелинизированные афференты боли

1



Мембрана в области перехвата специализирована для генерации возбуждения: количество Na+-каналов на единицу площади здесь примерно в 100 раз выше, чем в безмякотном волокне.

Обычно все волокна со скоростью проведения больше 3 м/с являются миелинизированными, скорость распространения нервного импульса в таких волокнах позвоночных достигает 100 м/с, тогда как в немиелинизированных она не превышает 3 м/с.

Механизмы и скорость проведения возбуждения в безмякотных и мякотных нервных волокнах различны. В безмякотных возбуждение распространяется непрерывно вдоль всей мембраны от одного возбужденного участка к другому, расположенному рядом, так, как мы уже обсуждали.

В миэлиновых волокнах возбуждение распространяется только скачкообразно, перепрыгивая через участки, покрытые миелиновой оболочкой (сальтаторно). Потенциалы действия в этих волокнах возникают только в перехватах Ранвье. В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. В момент возбуждения поверхность первого перехвата становится отрицательно заряженной по отношению к соседнему второму перехвату. Это приводит к возникновению местного (локального) электротока, который идет через окружающую волокно межклеточную жидкость, мембрану и аксоплазму от перехвата 2 к 1. Выходящий через перехват 2 ток возбуждает его, вызывая перезарядку мембраны. Теперь этот участок может возбудить следующий и т.д.

Перепрыгивание ПД через межперехватный участок возможно потому, что амплитуда ПД в 5-6 раз больше порога, необходимого для возбуждения не только следующего, но и 3-5 перехватов. Поэтому микроповреждения волокна в межперехватных участках или не одном перехвате не прекращают работы нервного волокна до тех пор, пока регенеративный явления не захватят 3 и более лежащих рядом швановские клетки.

Время, необходимое для передачи возбуждения от одного перехвата к другому, одинаково у волокон различного диаметра, и составляют 0,07 мсек. Однако поскольку длина межперехватных участков различна и пропорциональна диаметру волокна, в миэлинизированных нервах скорость проведения нервных импульсов прямо пропорциональная их диаметру.

Классификация нервных волокон. Электрический ответ целого нерва является алгебраической суммой ПД отдельных его нервных волокон. Поэтому, с одной стороны, амплитуда электрических импульсов целого нерва зависит от силы раздражителя (с ее ростом вовлекаются все новые волокна), а во-вторых, суммарный потенциал действия нерва может быть расчленен на несколько отдельных колебаний, причиной чего является неодинаковая скорость проведения импульсов по разным волокнам, составляющим целый нерв.

В настоящее время нервные волокна по скорости проведения возбуждения, длительности различных фаз ПД и строении принято разделять на три основных типа.

Характеристики

Тип файла
Документ
Размер
8,6 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее