1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 62
Текст из файла (страница 62)
В мелких углублениях (кавеолах) на внутренней поверхности легочных капилляров локализуется большое количество ангиотензин-конвертирующего фермента, который катализирует процесс превращения ангиотензина I в ангиотензин II.
В эндотелии легочных сосудов сосредоточены ферменты, которые осуществляют синтез тромбоксана В2 и простагландинов. Легкие также играют важную роль в регуляции агрегатного состояния крови благодаря своей способности синтезировать факторы свертывающей и противосвертывающей систем (тромбопластин, факторы VII, VIII, гепарин и др.). Легкие являются основным источником тромбопластина, который сосредоточен в эндотелии капилляров. В зависимости от концентрации тромбопластина в крови они увеличивают или уменьшают его выработку.
Легкие обеспечивают как синтез, так и деструкцию белков и липидов с помощью протеолитических и липолитических ферментов. Здесь же подвергаются разрушению содержащиеся в крови агрегаты клеток, капель жира, тромбоэмболы и бактерии.
22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. понятие об отрицательном давлении, его величина, происхождение, значение.
Внешнее дыхание, т.е. обмен воздуха между альвеолами легких и внешней средой, осуществляется в результате ритмических дыхательных движений.
Биомеханика дыхательных движений. Механизм вдоха. Акт вдоха (инспирация) совершается вследствие увеличения объема грудной клетки, а, следовательно, и грудной полости, в трех направлениях - вертикальном, сагиттальном и фронтальном. Это происходит вследствие поднятия ребер и опускания диафрагмы. Поднятие ребер совершается в результате сокращения наружных межреберных мышц, межреберные промежутки при этом расширяются.
Объем грудной клетки увеличивается во время вдоха, или инспирации, и уменьшается во время выдоха, или экспирации. Эти дыхательные движения обеспечивают легочную вентиляцию.
В дыхательных движениях участвуют три анатомо-функциональных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы.
Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыхательные мышцы подразделяют на инспираторные и экспираторные.
Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомогательные, мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы поднимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и увеличивают сагиттальный диаметр грудной клетки. Они включаются в дыхание при легочной вентиляции свыше 50 л*мин-1 или при дыхательной недостаточности.
В первые месяцы после рождения дыхательные движения осуществляются в основном за счет сокращения диафрагмы. Новорожденные животные погибают после перерезки диафрагмального нерва. У разных людей в зависимости от возраста и пола, одежды и условия труда дыхание осуществляется преимущественно или за счет межреберных мышц (реберный, грудной тип дыхания), или за счет диафрагмы (диафрагмальный, брюшной тип дыхания.) Тип дыхания не является строго постоянным и может приспособляться к условиям данного момента. При переносе тяжестей грудная клетка фиксируется мышцами туловища и межреберий неподвижно вместе с позвоночником, дыхание же становится диафрагмальным. При беременности - преобладает реберный тип дыхания, причем изменятся в основном поперечный размер грудной клетки.
Механизм выдоха (экспирации). При вдохе инспираторные мышцы человека преодолевают ряд сил: тяжесть приподнимаемых ребер, эластическое сопротивление реберных хрящей, сопротивление стенок живота и брюшных внутренностей, отдавливающих диафрагму верх. Когда вдох окончен, под влиянием указанных сил ребра опускаются и купол диафрагмы приподнимается. Объем грудной клетки вследствие этого уменьшается, Следовательно, экспирация происходит обычно пассивно, без участия мускулатуры. При форсированном выдохе к этим силам присоединяется сокращение внутренних межреберных мышц, мышц живота и задних зубчатых мышц. Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам. У нетренированного человека они участвуют в дыхании при вентиляции легких свыше 40 л*мин-1.
Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом я поперечным отростком соответствующего позвонка. Во время вдоха верхние отделы грудной клетки расширяются преимущественно в переднезаднем направлении, так как ось вращения верхних ребер расположена практически поперечно относительно грудной клетки (рис. 1, А). Нижние отделы грудной клетки больше расширяются преимущественно в боковых направлениях, поскольку оси нижних ребер занимают более сагиттальное положение. Сокращаясь, наружные межреберные и межхрящевые мышцы в фазу инспирации поднимают ребра, напротив, в фазу выдоха ребра опускаются благодаря активности внутренних межреберных мышц.
Движения диафрагмы. Диафрагма имеет форму купола, обращенного в сторону грудной полости. Во время спокойного вдоха купол диафрагмы опускается на 1,5—2,0 см, а периферическая мышечная часть несколько отходит от внутренней поверхности грудной клетки, поднимая при этом в боковых направлениях нижние три ребра. Во время глубокого дыхания купол диафрагмы может смещаться до 10 см. При вертикальном смещении диафрагмы изменение дыхательного объема составляет в среднем 350 мл*см-1. Если диафрагма парализована, то во время вдоха ее купол смещается вверх, возникает так называемое парадоксальное движение диафрагмы.
В первую половину выдоха, которая называется постинспираторной фазой дыхательного цикла, в диафрагмальной мышце постепенно уменьшается сила сокращения мышечных волокон. При этом купол диафрагмы плавно поднимается вверх, благодаря эластической тяге легких, а также увеличению внутрибрюшного давления, которое в экспирацию могут создавать мышцы живота. Движение диафрагмы во время дыхания обусловливает примерно 70—80% вентиляции легких. На функцию внешнего дыхания существенное влияние оказывает брюшная полость, поскольку масса и объем висцеральных органов ограничивают подвижность диафрагмы.
Изменение объема и давления в легких при дыхании. Легкие отделены от стенок грудной полости плевральной полостью (щелью). При вдохе, когда объем грудной клетки увеличивается, давление в плевральной полости уменьшается (примерно на 2 мм.рт.ст.), объем легких растет и давление в них падает. Поэтому воздух через воздухоносные пути входит (засасывается) в легкие. При выдохе, когда объем грудной клетки и грудной полости уменьшается, давление в плевральной щели немного увеличивается (на 3-4 мм. рт. ст.), растянутая легочная ткань сжимается , в легких повышается давление и воздух выходит из легких. Непосредственные измерения показывают, что давление в плевральной полости во время вдоха на 9 мм, а во время выдоха на 6 мм ниже атмосферного. Следовательно, в плевральной полости оно отрицательно.
Альвеолярное давление — давление внутри легочных альвеол. Во время задержки дыхания при открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос О2 и СО2 между внешней средой и альвеолами легких происходит только при появлении разницы давлений между этими воздушными средами. Колебания альвеолярного или так называемого внутрилегочного давления возникают при изменении объема грудной клетки во время вдоха и выдоха.
Изменение альвеолярного давления на вдохе и выдохе вызывает движение воздуха из внешней среды в альвеолы и обратно. На вдохе возрастает объем легких. Согласно закону Бойля—Мариотта, альвеолярное давление в них уменьшается и в результате этого в легкие входит воздух из внешней среды. Напротив, на выдохе уменьшается объем легких, альвеолярное давление увеличивается, в результате чего альвеолярный воздух выходит во внешнюю среду.
Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жидкости висцеральной и париетальной плеврами.
Внутриплевральное давление может быть измерено манометром, соединенным с плевральной полостью полой иглой. Эластическая тяга легких обусловлена двумя факторами: наличием в стенке альвеол большого количества эластических волокон, и поверхностным натяжением пленки жидкости, покрывающей стенки альвеол. Внутренняя поверхность стенки альвеол покрыта нерастворимой в воде тонкой (10-100 ммк) пленкой фосфолипида, называемого сурфоктантом, который стабилизирует силы поверхностного натяжения. Сурфоктант препятствует слипанию альвеол. При отсутствии этого вещества у новорожденных легкие не расправляются. Сурфоктант образуется в т.н. гранулярных пневмоноцитах.
Разница между альвеолярным и внутриплевральным давлениями называется транспульмональным давлением. В области контакта легкого с диафрагмой транспульмональное давление называется трансдиафрагмальным.
Величина и соотношение транспульмонального давления с внешним атмосферным давлением, в конечном счете, является основным фактором, вызывающим движение воздуха в воздухоносных путях легких. Изменения альвеолярного давления взаимосвязаны с колебаниями внутриплеврального давления. Альвеолярное давление выше внутриплеврального и относительно барометрического давления является положительным на выдохе и отрицательным на вдохе. Внутриплевральное давление всегда ниже альвеолярного и всегда отрицательное в инспирацию. В экспирацию внутриплевральное давление отрицательное, положительное или равно нулю в зависимости от форсированности выдоха.
На движение воздуха из внешней среды к альвеолам и обратно влияет градиент давления, возникающий на вдохе и выдохе между альвеолярным и атмосферным давлением. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки называется пневмотораксом. При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы.
Значение воздухоносных путей. Непосредственно в газообмене участвует только воздух, заполняющий альвеолы. Объем же воздухоносных путей, которые составляет 120-150 мл, называют объемом вредного пространства - ОВП. Изменение просвета бронхов может существенно менять величину ОВП.
Атмосферный воздух, проходя через воздухоносные пути, очищается от пыли, согревается и увлажняется. При поступлении крупных частиц пыли в трахею и бронхи рефлекторно возникает кашель, а при поступлении в нос - чихание. Кашель и чихание - это защитные дыхательные рефлексы, очищающие дыхательные пути от инородных частиц и слизи, которые затрудняют дыхание.
22. 3. Вентиляция легких: легочные объемы и емкости
В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции определяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого является частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.
Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.
Легочные объемы. При различных положениях грудной клетки легкие содержат разное количество воздуха. Различают четыре основных положения грудной клетки: 1) положение максимального вдоха, 2) положение спокойного вдоха, 3) положение максимального выдоха, 4) положение спокойного выдоха. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.
Р ис. 41. Легочные объемы и емкости.