Главная » Просмотр файлов » 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2

1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 64

Файл №827859 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (Савченков - Курс лекций по физиологии) 64 страница1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859) страница 642021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 64)

Эффективность легочной вентиляции. Число дыхательных движений у взрослого человека в состоянии покоя составляет около 16-18 минуту. Дети дышат чаще (новорожденные - до 40 в минуту). Произведение объема отдельного вдоха (ДО) на число дыханий в минуту (ЧД) составляет минутный объем дыхания (МОД). Он зависит от работы, положения тела, возраста, пола. При одном и том же МОД степень вентиляции легких зависит от глубины дыхания. Редкое, но более глубокое дыхание значительно эффективнее, так как в этом случае альвеолы вентилируются лучше. Эффективность легочной вентиляции (ЭЛВ) рассчитывают как отношение объема воздуха, входящего в альвеолы при каждом вдохе, к тому объему, который находился в легких перед вдохом. :

При спокойном дыхании там находится ОО+РОЭ (функциональная остаточная емкость, ФОЕ). Входит же ДО-ВВП (т.е. дыхательный объем минус воздух вредного пространства). Значит, ЭЛВ = (ДО-ОВП)/ФОЕ. При спокойном дыхании ЭЛВ составляет около 12%, при глубоком - до 25%. Так вычисляется эффективность вентиляции в течение одного дыхательного цикла.

Для вычисления эффективности легочной вентиляции в минуту надо все входящие в формулу величины умножать на частоту дыхания: . ЭЛВмин = (МОД-ОВП*ЧД)/ФОЕ*ЧД. Минутный объем дыхания (МОД) — это общее количество воздуха, которое проходит через легкие за 1 мин. У человека в покое МОД составляет в среднем 8 л*мин-1. МОД можно рассчитать, умножив частоту дыхания в минуту на величину дыхательного объема. В конечном счете величина альвеолярной вентиляции тем ниже, чем выше частота дыхания и меньше дыхательный объем.

Резервы аппарата внешнего дыхания весьма велики. В покое частота дыхательных движений человека близка к 16 в минуту, а объем вдыхаемого воздуха — около 500 мл.

Максимальная вентиляция легких — объем воздуха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений. Максимальная вентиляция вызывается произвольно, возникает во время работы, при недостатке содержания О2 (гипоксия), а также при избытке содержания СО2 (гиперкапния) во вдыхаемом воздухе. При максимальной произвольной вентиляции легких частота дыхания может возрастать до 50—60 в 1 мин, а ДО — до 2—4 л. В этих условиях МОД может доходить до 100—200 л*мин-1. Максимальную произвольную вентиляцию измеряют во время форсированного дыхания, как правило, в течение 15 с. В норме у человека при физической нагрузке уровень максимальной вентиляции всегда ниже, чем максимальная произвольная вентиляция.

ЛЕКЦИЯ 23. МЕХАНИЗМЫ ГАЗООБМЕНА

23. 1. Газообмен между альвеолярным воздухом и кровью: движущая сила газообмена, показатели парциального давления O2 и СО2 в альвеолярном воздухе и напряжения этих газов в артериальной венозной крови и в тканях. Факторы, способствующие газообмену в легком.

Диффузия газов в легких и транспорт газов кровью. Переносчиком кислорода из альвеолярного воздуха к тканям тела и углекислого газа от тканей тела к легочным альвеолам служит кровь. Рассмотрим, в каком состоянии находятся эти газы в крови и какие факторы обусловливают их поглощение кровью и выделение из крови.

Газы могут находиться в жидкости в состоянии простого физического растворения (абсорбции) и химической связи. При этом количество газа, которое может растворяться в жидкости, зависит от ее состава, объема, давления газов над жидкостью, температуры и природы исследуемого газа, а также количества растворенных в жидкости веществ. Все эти факторы определяют т.н. абсорбционный коэффициент, т.е. тот объем газа, который может раствориться в 100 мл жидкости при 0о С и давлении газа 760 мм. Hg. Чем ниже температура и больше давление, тем больше газа растворяется в жидкости.

Если над жидкостью находится смесь газов, то каждый газ растворяется в ней соответственно его парциальному давлению в смеси. Если газы растворены в жидкости, применяют термин "напряжение", аналогичный термину "давление". В общем случае при соприкосновении жидкости со смесью газов диффузия и растворение их в жидкости определяется разностью парциальных давлений и напряжений этих газов в жидкой и газообразной фазе. Газ по градиенту давления (напряжения) поступает в сторону меньшего давления (напряжения).

Парциальное давление газов во вдыхаемом воздухе равно для кислорода 256 мм Hg, для азота 600 мм Hg. При расчете парциального давления газов в альвеолярном воздухе следует учитывать напряжение в нем водяных паров, парциальное давление которых при температуре тела равно 47 мм Hg. При 14,3% кислорода его парциальное давление в альвеолярном воздухе равно 102 мм Hg, углекислого газа - 5,6% и 40 мм Hg, азота - 80% и 571 мм Hg.

При таком парциальном давлении в альвеолярном воздухе соответственно абсорбционным коэффициентам кислорода и углекислого газа их содержание в 100 мл крови должно было бы быть 0,25 мл кислорода, 2,69 мл углекислоты, 1,04 мл азота. Однако из крови можно извлечь гораздо больше кислорода и углекислоты. Это свидетельствует о том, что эти газы находятся в крови не только в физически растворенном виде, но и в химически связанном состоянии. Кислород почти весь связан с гемоглобином, углекислота - частью с гемоглобином, частью с бикарбонатами.

Максимальное количество кислорода, которое может быть поглощено 100 мл крови, называется удельной кислородной емкостью. Она зависит от содержания в крови Hb. Грамм Hb связывает 1, 34 мл кислорода. Если в крови содержится 140 г/л Hb, то 100 мл крови связывают 19 мл кислорода. В этом случае общая кислородная емкость крови составляет около 95-100 мл., и может удовлетворить потребность организма в кислороде в течение 3-4 минут при условии полной деоксигенации Hb к этому моменту (как у кита)

Артериальная кровь здорового человека содержит 18-20% кислорода, 50-52% углекислоты и около 1% азота. Венозная кровь соответственно 12% кислорода, 55-56% углекислого газа и 1% азота.

Приведенные цифры показывают, что венозная кровь, пройдя по капиллярам легкого, обогащается кислородом и теряет углекислый газ. Артериальная кровь в тканях теряет кислород и обогащается углекислотой. Поскольку азот в газообмене не участвует, содержание его в венозной и артериальной крови одинаково.

Напряжение кислорода в артериальной крови равно 100 мм Hg, углекислого газа 40 мм Hg, в венозной же крови эти цифры составляют соответственно 40 мм О2 и 46 мм СО2. За короткое время пребывания крови в легочных капиллярах напряжение газов в крови практически сравнивается с их парциальным давлением в альвеолярном воздухе.

Анатомо-физиологическая структура легкого создает исключительно благоприятные условия для газообмена. Установлено, что респираторный аппарат представлен 300 миллионами альвеол и приблизительно таким же количеством капилляров. Общая поверхность альвеол составляет около 100 кв. метров, а толщина легочной мембраны всего 0,3-2,0 мк. Физико-химические свойства тканей легочной мембраны таковы, что растворимость в ней кислорода составляет 0,024, а углекислоты 0,567, т.е. почти в 20 раз больше. Это исключает возможность нарушений диффузии углекислоты в любых условиях жизнедеятельности организма.

Скорость диффузии кислорода через легочную мембрану в покое равна у взрослого человека 15-30 мл на 1 мм Hg в минуту. Это значит, что при разнице напряжения кислорода в 1 мм в минуту в кровь поступает 15-30 мл кислорода. При интенсивной мышечной работе эта величина может возрастать до 60 мл, что зависит от расширения легочных капилляров. Скорость диффузии углекислого газа значительно больше.

Количество физически растворенных газов составляет очень небольшую часть общего количества газов, транспортируемых кровью. Это обусловлено способностью крови переносить газы в форме химических соединений, составляющих основную емкость крови. Отношения между растворенными и химически связанными частями газов определяются формулой:

А = К + а Р/760,

где А = количество газа в крови, К- количество химически связанного газа, а - коэффициент растворимости, Р - парциальное давление газа в растворе.

Равновесие между кровью и газом определяется в этих условиях не только их растворением, но и тем, что молекулы, проникшие в кровь, все время улавливаются веществами, вступающими с ними в соединение, и следовательно, перестают существовать как свободные молекулы. Только после того, как молекулы, уловленные кровью, насытят всю газовую смесь за счет химического соединения, последующие молекулы остаются свободными и развивают в растворе напряжение, равное парциальному давлению газа в контактирующем с кровью воздухе. Так, из 19% кислорода артериальной крови только 0,3% растворены в крови, остальной газ связан с Hb.

Диффузия газов через аэрогематический барьер. В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров.

Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связывание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм*с-1. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты.

Значительным препятствием на пути диффузии О2 является мембрана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов.

Общие закономерности процесса диффузии могут быть выражены в соответствии с законом Фика следующей формулой: .M/t=ΔP/XCKα, где М — количество газа, t — время, M/t — скорость диффузии, ΔР — разница парциального давления газа в двух точках, X — расстояние между этими точками, С — поверхность газообмена, К — коэффициент диффузии, α— коэффициент растворимости газа.

В легких ΔР является градиентом давлений газа в альвеолах и в крови легочных капилляров. Проницаемость альвеолярно-капиллярной мембраны прямо пропорциональна площади контакта между функционирующими альвеолами и капиллярами (С), коэффициен­там диффузии и растворимости (К и α).

Анатомо-физиологическая структура легких создает исключительно благоприятные условия для газообмена: дыхательная зона каждого легкого содержит около 300 млн. альвеол и приблизительно аналогичное число капилляров, имеет площадь 40—140 м2, при толщине аэрогематического барьера всего 0,3—1,2 мкм.

Особенности диффузии газов через аэрогематический барьер ко­личественно характеризуются через диффузионную способность легких. Для О2 диффузионная способность легких — это объем газа, переносимого из альвеол в кровь в минуту при градиенте альвеолярно-капиллярного давления газа 1 мм рт.ст. Согласно закону Фика, диффузионная способность мембраны аэрогематического барь­ера обратно пропорциональна ее толщине и молекулярной массе газа и прямо пропорциональна площади мембраны и в особенности коэффициенту растворимости О2 и СО2 в жидком слое альвеолярно-капиллярной мембраны.

Содержание газов в альвеолярном воздухе. Выше было указано парциальное давление газов в альвеолярной газовой смеси, которое поддерживается на достаточно постоянном уровне, несмотря на возможные изменения режима легочной вентиляции. Потребление кислорода отражает интенсивность клеточного метаболизма. Конечным продуктом метаболизма является СО2. Отношение образующегося в результате окисления СО2 к количеству потребляемого в организме О2, называется дыхательным коэффициентом.

В условиях покоя в организме за минуту потребляется в среднем 250 мл О2 и выделяется около 230 мл СО2.

Из всего О2 вдыхаемого воздуха (21 % от всего объема) в кровь через аэрогематический барьер в легких поступает только 1/3. Нормальное парциальное давление газов в альвеолярном воздухе поддерживается в том случае, если легочная вентиляция равна 25-кратной величине потребляемого О2. Другим обязательным условием поддержания нормальной концентрации газов в альвеолярном воздухе является оптимальное отношение альвеолярной вентиляции к сердечному дебиту (Q): Vальв/Q, которое обычно соответствует 0,8—1,0. Для газообмена в легких подобное отношение является оптимальным. Различные зоны легких не представляют собой идеальную модель для поддержания оптимального отношения Vальв/Q, поскольку альвеолы неравномерно вентилируются воздухом и перфузируются кровью.

Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого О2 и выделяемого СО2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвеолярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку.

Характеристики

Тип файла
Документ
Размер
8,6 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее