1611689220-1e5d12ed6413322f5f3df7230054db67 (826744), страница 17
Текст из файла (страница 17)
уравнений:dx= f (t, x) (c.c.)dt©ªПусть Φ(i) (t, x), i = 1, n - какая-либо система функциональнонезависимых первых интегралов системы (∗).Замечание. 1) Функция Φ(t, x) - называется первым интегралом системы (∗), если она тождественно не равна константе, нов то же время эта функция постоянна вдоль каждого решенияx = x(t) системы (∗).2) Интегральные кривые системы (∗) x = x(t) называются характеристиками уравнения (1).3) Об одном теоретическом способе нахождения системы функционально независимых первых интегралов.
Пусть x = x(t, x0 ) (∗)1Лекция №2, НГУ, ММФ, 20102решение задачи Коши dx = f (t, x),dtx|t=t0 = x0 , x0 = (x10 , ..., xn0 ).По теореме о неявно заданных функциях векторное уравнение x =x(t, x0 ) может бытьотносительно x0 : x0 =© однозначно разрешеноªx0 (t, x) и система xi0 (t, x), i = 1, n может быть взята в качествесистемы функционально независимых первых интегралов векторного уравнения (∗).Общееуравнения (1).© решениеª(1)u = F Φ (t, x), ..., Φ(n) (t, x) , F - произвольная функция (достаточно гладкая).Свойство любого решения уравнения (1): вдоль характеристикирешение u постоянно. Далее уравнение (1) можно еще переписатьтак:dud= 0, где= L - полная производная от u вдоль характериdtdtстики.Задача Коши для уравнения (1):(Lu = 0,(2)u|t=t0 = ϕ(x),где ϕ(x) - некоторая гладкая функция.Формализмпостроения решения задачи Коши (2):(1)(1)Φ(t,x)=Φ,0а) ... (n)(n)Φ (t0 , x) = Φ .Из этой системы находим зависимость(1)(n)x = X(Φ , ..., Φ ).б) Тогда решение задачи Коши (2) записывается так:u = ϕ(X(Φ(1) (t, x), ..., Φ(n) (t, x))).Лекция №2, НГУ, ММФ, 20103du= 0 - полdtная производная от u в силу системы (∗) равна 0.
Это означает,что вдоль характеристики функция u постоянна.Рассмотрим вместо уравнения (1) более общее уравнение:Замечание. Уравнение (1) можно трактовать так:(10 ) f0 (t, x)ut + (f, ∇u) = 0.Рассмотрим два предельных случая.1-ый предельный случай.Если f0 6= 0, то (10 ) перепишется в виде (1)µ¶100f, ∇u = 0,(1 ) ut +f0характеристики которого определяются из соп. системы:(∗∗)dx1= f.dtf0Удобно ввести параметр s:ds1= , s|t=t0 = 0.dtf0Тогда система (∗∗) перепишется так:dt= f0 (t, x),ds dx = f (t, x).dsЗаметим, что вектор fe = (f0 , f ) = (f(0 , f1 , ..., fn ) определяет векx = x(s),тор, касательный к характеристикеуравнения (10 ).s = s(t)Говорят, что этот вектор задает характеристическое направлениев точке (t, x).
Если мы решаем задачу Коши для уравнения (10 )((100 )) с данными при t = t0 : u|t=t0 = ϕ(x), то гиперплоскостьt = t0 ни в одной точке не имеет хар. направления.Лекция №2, НГУ, ММФ, 201042-ой предельный случай.Если f0 (t, x) ≡ 0, то (10 ) перепишется так:(1000 ) (f (t, x), ∇u) = 0,характеристики которого находятся из системы:dt= 0,ds dx = f,dsт.е.
при t = const характеристики расположены в гиперплоскости t = const. Поскольку вдоль каждой такой характеристики uпостоянно, то следовательно задача Коши((f, ∇u) = 0,u|t=t0 = ϕ(x)разрешима не при любой функции ϕ(x). Промежуточный случайбудет рассмотрен далее на примере.До сих пор мы рассматривали данные Коши на гиперплоскостиt = t0 . Рассмотрим теперь так называемую обобщенную задачуЛекция №2, НГУ, ММФ, 20105Коши, которая ставится так:(f0 ut + (f, ∇u) = 0,(3)u|γ = ϕ(t, x), (t, x) ∈ γ.Здесь γ - гладкая гиперповерхность с уравнениемΨ(t, x) = 0,¯e ¯¯ 6= 0, ∇Ψe = (Ψt .Ψx , ..., Ψx ) = (Ψt , ∇Ψ).
Сделаемпричем |∇Ψ|1nγв задаче (3) замену независимых переменных:(x = x,(+)ξ = Ψ(t, x), u(t, x) = ue(ξ, x);при этом:т.е.∂u ∂eu∂u∂eu∂eu=Ψt ,=+Ψx ,∂t∂ξ∂xk∂xk ∂ξ k∇u = ∇eu+∂eu∇Ψ.∂ξЛекция №2, НГУ, ММФ, 20106>0=0<0Следовательно задача (3) перепишется так:([f0 Ψt + (f, ∇Ψ)]euξ + (f, ∇eu) = 0,(30 )ue|ξ=0 = ϕ(t, x), t = t(0, x)(заметим, что из (+) следует, что t = t(ξ, x), если Ψt |γ 6= 0, например).Задача (30 ) однозначно разрешима, если[f0 Ψt + (f, ∇Ψ)] |γ 6= 0,eeт.е. (fe, ∇Ψ)|γ 6= 0, f = (f0 , f ).Это означает, что вектор fe не лежит в касательной гиперплоскости к гиперповерхности γ (иными словами, ни в одной точкеповерхность γ не имеет характеристического направления).Примеры:1) xut − (t + 1)ux = 0, x ∈ R1 ;dxt+1уравнение характеристик:=−,dtxт.е. общее решение: u = F(x2 + (t + 1)2 ).Найдем решение задачи Коши при t > 0 с начальным условием:Лекция №2, НГУ, ММФ, 20107u|t=0 = x.Однако простые рассуждения показывают, что начальное условиеможно задавать либо при x < 0, либо при x > 0 (на всей оси t =0 начальное условие задавать нельзя!).
Если начальное условиезадается при x < 0, то решение имеет вид:pu = − x2 + (t + 1)2 − 1, t > 0.Причина того, почему начальное условие нельзя задавать приt(f0 ,f1 )0x-1всех x, заключается в том, что в точке (0, 0) линия t = 0 имеетхарактеристическое направление.2) ut + ux = 0, u = F(x − t), Ψ = x − t, f0 Ψt + f1 Ψx = 0.2. Квазилинейные уравнения с частными производными.(4) Luk = gk (t, x, u), k = 1, m;∂L=+ (f, ∇), f = (f1 , ..., fn ),∂tЛекция №2, НГУ, ММФ, 20108fk = fk (t, x, u), k = 1, n,; u = (u1 , ..., um ).Система (4) называется квазилинейной. Если f = f (t, x), тосистема называется почти линейной.а) Нахождение общего решения.dx= f (t, x, u),dt(5) du = g(t, x, u), g = (g1 , ..., gm )dt(соп.
сист. об. диф. уравнений).dx= f (t, x, u) называются харакdtтеристиками системы (4). Но в отличии от лин. уравнения (1),в квазилинейном случае нельзя найти характеристики, не знаяduрешения u = u(t, x). Каждое уравнение системы= g(t, x, u)dtназывается соотношением на характеристике. Пусть {Φ(i) (t, x, u),i = 1, n + m} - какая-либо функционально независимая системапервых интегралов системы (5). Тогда общее решение системы (4)дается в следующем виде: no(1)(n+m)F1 Φ (t, x, u), ..., Φ(t, x, u) = 0,........no Fm Φ(1) (t, x, u), ..., Φ(n+m) (t, x, u) = 0,Интегральные кривые системыт.е.
функции uk , k = 1, m определяются неявно.б) Решение задачи Коши(Lu = g,(6)u|t=t0 = ϕ(x) = (ϕ1 (x), ..., ϕm (x)),Лекция №2, НГУ, ММФ, 2010строится так:9(1)(1) Φ (t0 , x, u) = Φ ,........(n+m) (n+m)Φ(t0 , x, u) = Φ;т.е.(1)x = X(Φ , ...),(1)u = U (Φ , ...).Тогда решение задачи Коши (6) дается в виде:U (Φ(1) (t, x, u), ...) = ϕ(X(Φ(1) (t, x, u), ...)),т.е. определяется в неявном виде.Пример.ut + uux = 0;dx= u → x − ut = const,dtс.с.об.ур. du = 0 → u = const.dt(Φ(1) = x − ut,Φ(2) = u,F(x − ut, u) = 0 - общее решение. Задача Коши:(ut + uux = 0,u|t=0 = ϕ(x)имеет решение:(8) u = ϕ(x − ut).До сих пор, при построении решений того или иного уравнения, мынеявно предполагали, что строим гладкие решения, т.е.
решениянепрерывно дифференцируемые до некоторого порядка.Так задача Коши: ut + ux = 0, u|t=0 = ϕ(x) имеет гладкое решение при всех t > 0, x ∈ R1 , если функция ϕ(x) непрерывноЛекция №2, НГУ, ММФ, 201010дифференцируема. Однако в случае задачи Коши (7) дело обстоит сложнее. Оказывается, далеко не всегда можно построить гладкое решение этой задачи при всех t > 0 (даже, если ϕ(x) - гладкая функция). Итак, гладкое решение перестает существовать, какtt=(x0 )t+x0t=-1u=u=1,1,x-x=x+-11-11x0xтолько характеристики пересеклись. Из (8) легко получаемϕ0 (x0 )ux (t, x) = ux (t, x0 + ϕ(x0 )t) =.1 + tϕ0 (x0 )Следовательно, гладкое решение задачи Коши (7) существует привсех t > 0, если ϕ0 (x0 ) ≥ 0. Если же в некоторой области ϕ0 (x0 ) <0, то гладкое решение задачи (7) существует при 0 < t < tk , где:1tk =sup |ϕ0 (x0 )|x0(sup берется в той области, где ϕ0 (x0 ) ≤ 0).x0При t ≥ tk гладкое решение перестает существовать. Явлениенеограниченного роста градиентов основных величин (например,ux ) получило название градиентной катастрофы.3.
Уравнение Гамильтона-Якоби.(9) ut + H(t, x, ∇u) = 0,Лекция №2, НГУ, ММФ, 201011H(·) - гладкая функция своих аргументов.Обозначим: p = ∇u, Hp = (Hp1 , ..., Hpn ),∂+ (Hp , ∇).Hx = (Hx1 , ..., Hxn ), L =∂tТогдаdx= Hp (t, x, p),dt -канонич. ур-ния Гамильтона;dpLp = −Hx → (10)= −Hx (t, x, p),dt du = −H(t, x, p) + (p, Hp ).dtЗадача Коши:(ut + H(t, x, ∇u) = 0,(11)u|t=0 = ϕ(x),при условии, что решение ее существует и является гладкой функцией, то это решение может быть найдено путем решения задачиКоши для (10) с начальными данными: x|t=0 = x0 ,(++)p|t=0 = ∇ϕ(x0 ),u|t=0 = ϕ(x0 ).Справедливо и обратное утверждение: если u, p - решение задачиКоши для (10), то∇u = p, ut = −H(t, p, ∇u).Задачи.1) Найти решение задачи Коши:(ρt + (∇ω, ∇ρ) = −ρ∆x ω,ρ|t=0 = ρ0 (x);ω = ω(t, x) - известная гладкая функция.Лекция №2, НГУ, ММФ, 20102) Найти решение задачи Коши: ω + 1 |∇ω|2 + U (x) = 0,t2 ω| = ω (x), U (x) − известная функция.t=0012.