Диссертация (792633), страница 12
Текст из файла (страница 12)
№2. С. 34-38.39.Чернов Ю.Т., Зебилила М.Д.Х. Плоские колебания массивного тела присмещенииоснования/Ю.Т. Чернов,М.Д.Х.ЗебилилаОснования,//фундаменты и механика грунтов. 2018. № 3. С. 18-22.40.Чернов Ю.Т., Зебилила М.Д.Х. Расчет систем виброизоляции оборудования, втом числе, с нелинейными характеристиками/ Ю.Т. Чернов, М.Д.Х. Зебилила //Строительная механика и расчет сооружений. 2017. № 4.
С. 47-54.41.Чернов Ю.Т., Зебилила М.Д.Х. Виброизоляция машин ударного действия снелинейными элементами/ Ю.Т. Чернов, М.Д.Х. Зебилила// БюллетеньСтроительной Техники. 2018. № 1 (1001), С. 46-48.42.Чернов Ю.Т., Новожилов А.И. Передаточные и импульсные переходныефункции в задачах динамического расчета массивных фундаментов и системвиброизоляции/Ю.Т.Чернов,А.И.Новожилов//Сейсмостойкоестроительство. Безопасность сооружений.
2006. № 1. С. 55-59.43.Чернов Ю.Т., Осипова М.В. Общий случай плоских колебаний массивных телна упругих опорах/ Ю.Т. Чернов, М.В. Осипова // Строительная механика ирасчет сооружений. 2015. № 4 (261). С. 58-63.44.Чернов Ю.Т., Петров И.А. О некоторых методах и алгоритмах расчета системс выключающимися связями/ Ю.Т. Чернов, И.А.
Петров // Строительнаямеханика и расчет сооружений. 2013. № 2. С. 61-66.45.Чернов Ю.Т., Петров И.А., Осипова М.В. Методы и примеры динамическогорасчета нелинейных систем с конечным числом степеней свободы/ Ю.Т.103Чернов, И.А. Петров, М.В. Осипова // X Российская национальнаяконференцияпосейсмостойкомустроительствуисейсмическомурайонированию (с международным участием).
г. Сочи, Краснодарский край,Россия. 2013. С. 99–101.46.Чернов Ю.Т., Романенко А.Б. К расчету нелинейных систем виброизоляции/Ю.Т. Чернов, А.Б. Романенко // Сейсмостойкое строительство. Безопасностьсооружений. 2002. № 4. С. 34-38.47.Чернов ЮТ. О выборе порождающих систем при исследовании нелинейныхколебаний/ Ю.Т.
Чернов // Динамика строительных конструкций: Сб. научныхтрудов ЦНИИСК им. Кучеренко. - М. 1985. С. 22-23.48.Шейнин И.С. О пусковых резонансах в линейных системах: Исследования подинамике сооружений и расчету конструкций на упругом основании/ И.С.Шейнин М.: Госстройиздат, 1961.49.Шильников Л.П., Шильников А.Л., Тураев Д.В. Методы качественной теориив нелинейной динамике/ Л.П. Шильников, А.Л. Шильников, Д.В. Тураев Москва-Ижевск: Институт компьютерных исследований, 2003. 428 с.50.Cabaltica A.D., Hoa P.N., and Thang C.Q.
Structural Control of BenchmarkBuildings Equipped with Variable Stiffness Devices and Viscous Fluid Dampers/A.D. Cabaltica, P.N. Hoa, and C.Q. Thang // ARPN Journal of Science andTechnology. May 2014. No. 5 Vol. 4. pp. 295-30551.Chopra A.K. Dynamics of Structures, Theory and Application to EarthquakeEngineering/ A.K.Chopra A.K. Berkley; Pearson Education Asia Ltd andTsinghua University Press, 2004. 846p.52.Constantinou M.C., Symans M.D.
Experimental and analytical investigation ofseismic response of structures with supplemental fluid viscous dampers/ M.C.104Constantinou, M.D.Symans Buffalo, NY.National Center for EarthquakeEngineering Research. Report No. NCEER-92-0032. 1992 206p.53.Dae-Young K., JinWook J. Experimental and Numerical Studies of a NewlyDeveloped Semi-Active Outrigger Damper System/ K. Dae-Young, J. JinWook //Council on Tall Buildings and Urban Habitat (CTBUH). Seoul.
2011. Assesed at:members.ctbuh.org/paper/844.54.Diala U.H., Ezeh G.N. Nonlinear damping for vibration isolation and control usingsemi active methods/ U.H. Diala, G.N. Ezeh // Savap Internation. 2012. Vol. 3No. 3. pp. 141 -15255.Fujita K., Takewaki I. Property of Critical Excitation for Moment-Resisting FramesSubjected to Horizontal and Vertical Simultaneous Ground Motion/ K. Fujita, I.Takewaki // Journal of Zhejiang University – Science A.
2009. No. 10(11). pp.1561-1572.56.GERB Vibration Control. 1982. Pipework dampers. Technical report.57.Gluck N., Reinhorn A. M., Gluck J., Levy R. Design of supplemental dampers forcontrol of structures/ N. Gluck, A. M. Reinhorn, J. Gluck, R. Levy // ASCE Journalof Structural Engineering. 1996. No. 3.Vol. 122 pp. 1394-1399.58.He S., Rock T. and Singh R. Construction of Semianalytical Solutions to Spur GearDynamics Given Periodic Mesh Stiffness and Sliding Friction Functions/ S. He, T.Rock and R.
Singh // Journal of Mechanical Design. December 2008. No. 130. pp. 122601-9.59.Hongnan L., Linsheng H. Review Article. Advances in Structural Control in CivilEngineering in China/ L. Hongnan, H. Linsheng// Mathematical Problems inEngineering. March, 2010. Assessed at: http://dx.doi.org/10.1155/2010/93608110560.Joung J.W., Smyth A.W., and Chung L.
Comparison of switching control algorithmseffective in restricting the switching in the neighborhood of the origin/ J.W. Joung,A.W. Smyth, and L. Chung // Smart Materials and Structures. 2010. Vol. 19.61.Kamagata S. and Kobori T. Autonomous adaptive control of active variable stiffnesssystems for seismic ground motion/S. Kamagata and T. Kobori // Proceedings of the1st World Conference on Structural Control, Los Angeles, U.
S. A. 1994. Vol. 2.62.Kareem A., Kijewski T., and Tamura Y. Mitigation of Motions of Tall Buildingswith Specific Examples of Recent Applications/ A. Kareem, T. Kijewski, and Y.Tamura // Wind and Structures. 1999. No. 3. Vol.2. pp. 201-251.63.Khan W., Akhtar S., and Hussain A. Non-linear time history analysis of tall structurefor seismic load using damper/ W.
Khan, S. Akhtar, and A. Hussain // InternationalJournal of Scientific and Research Publications. 2014. Vol. 4, No. Issue 4.64.Li Y., Li J. Base isolator with variable stiffness and damping: design, experimentaltesting and modelling/ Y. Li, J. Li // Australasian Conference on the Mechanics ofStructures and Materials (ACMSM23). Byron Bay, Australia. 2014.Vol. II. pp.913-918.65.Makris N., Constantinou M.C. Experimental study and analytical prediction ofresponse of spring-viscous damper isolation system/ N. Makris, M.C. Constantinou// Earthquake Engineering, Tenth World Conference.
Balkema, Rotterdam. 1992.66.Makris N., Constantinou M. C. Fractional derivative Maxwell model for viscousdampers/ N. Makris, M. C. Constantinou //J. of Structural Engineering. ASCE.1991. Vol. 117. pp. 2708-2724 .67.Makris N., Constantinou M. C.
Spring-viscous damper systems for combinedseismic and vibration isolation/ N. Makris, M. C. Constantinou // EarthquakeEngineering and Structural Dynamics. 1992. Vol 21. Issue 8. pp. 649-664.10668.Martinez-Rodrigo M., Romero M.L. An optimum retrofit strategy for momentresisting frames with nonlinear viscous dampers for seismic applications/ M.Martinez-Rodrigo, M.L. Romero // Engineering structures. 2003. No.
25. pp.913–925.69.Nagarajaiah S., Ertan S. Structures with Semiactive Variable Stiffness/ S.Nagarajaiah, S. Ertan // Journal of Structural Engineering. 2007. Vol. 33. No. 1. pp. 67-77.70.Nagarajaiah S., Sahasrabudhe S. Seismic response control of smart sliding isolatedbuildings using variable stiffness systems: Experimental and numerical study/ S.Nagarajaiah, S.
Sahasrabudhe // Earthquake Engineering and Structural Dynamics. 2006. Vol. 35. No. 2. pp. 177-197.71.Ribakov Y., Gluck J., and Reinhorn A.M., Active viscous damping system forcontrol of MDOF structures/ Y. Ribakov, J. Gluck, and A.M. Reinhorn // Earthquakeengineering and structural dynamics. 2001. Vol. 30. Issue 2. pp. 195-212.72.Rodriquez S., Seim C. and Ingham, T. Earthquake protective systems for the seismicupgrade of the Golden Gate bridge/ S. Rodriquez, C.
Seim and T. Ingham // Proc.3rd U.S. Japan Workshop on Protective Systems for Bridge. Berkeley, CA. 1994.73.Royston T.J., Singh R. Periodic Response of Mechanical Systems with Local NonLinearities Using an Enhanced Galerkin Technique/ T.J. Royston, R. Singh //Journal of Sound and Vibration. 1996. No. 194 (2). pp. 243-263.74.Sakamoto, M. and Kobori, T. Applications of Structural Response Control (Reviewsfrom the Past and Issues Toward the Future)/ M. Sakamoto and T. Kobori //Proceedings of the Second International Workshop on Structural Control, HongKong.
Dec. 1996.75.Sakamoto M. Practical Applications of Active Structural Response Control andEarthquake & Strong Wind Observation Systems/ M. Sakamoto // Planning107Workshop for the Hong Kong International Full-Scale Control Test Facility, HongKong University of Science & Technology. 9-10 Dec. 199376.Soong T.T., Constantinou M.C. Passive and active structural vibration control incivil engineering/ T.T. Soong, M.C. Constantinou New York: Department of CivilEngineering State University of New York at Buffalo, 1994. pp.
37377.Soong T.T., Dargush G.F. Passive Energy Dissipation and Active Control. StructuralEngineering Handbook/ T.T. Soong, G.F. Dargush Boca Raton: CRC Press LLC,1999. 28p..78.Takewaki I., Fujita K., Yamamoto K., and Takabatake H. Smart Passive DamperControl for Greater Building Earthquake Resilience in Sustainable Cities/ I.Takewaki, K. Fujita, K. Yamamoto, and H.
Takabatake // Sustainable Cities andSociety. 2011. No. 1(1). pp. 3-15.79.Xinghia Y. Model and analysis of variable stiffness semi-active control system/ Y.Xinghia // In Proceedings of the Twelfth World Conference on EarthquakeEngineering (WCEE). Auckland, New Zealand. 2000. paper No. 151680.Yang J. N., Kim J.
H., and Agrawal A. K. Resetting semi-active stiffness damper forseismic response control/ J. N. Yang, J. H. Kim, and A. K. Agrawal //Journal ofStructural Engineering. 2000. Vol. 126, Issue 12 pp. 1427-1433.Нормативные документы81.ГОСТ 12.1.012-90 «Вибрационная безопасность. Общие требования».82.СН. 2.24/ 2.1.8.566-96 «Производственная вибрация, вибрация в помещенияхжилых и общественных зданий».83.СП 26.13330.2012 «СНиП 2.02.05-87 Фундаменты машин с динамическиминагрузками.108ПРИЛОЖЕНИЯ 1Программа расчета нелинейной системы с ДССticclc %clears the command windowclear %clears old variable defn from the workspaceclose all%closes all figure windows% % Данныеm1 = 10; m2 = 6; k1 = 3500; k2 = 4200; k3 = 3500;w = 78.64; q0 = 350; g1 = 0.1; g2 = 0.1; z0 = 0.015;%%**p01 = (k1/m1)^0.5; T1 = 2*pi/w; ts = T1/5;%%Нагрузка приложена на:ss = 1;%%Число степеней свободыdf = 2;%%**s1 = k2/k1; h1 = m1/m2;e1 = h1 + h1*s1 + 1;H1 = ((e1^2)/4 - h1*s1)^0.5; %/4 or /2N1 = 1/(2*m2*H1);%%**p1 = ((e1/2-H1)*p01^2)^0.5; p2 = ((e1/2+H1)*p01^2)^0.5;%% диссип коэф соотв формам собств колебA1 = (m1*(k1*g1 + k2*g2)+ m2*k1*g1)./(m1*m2*(p2.^2-p1.^2));B1 = (g1 + g2)./(p2.^2-p1.^2);G1 = -A1 + p2.^2*B1; G2 = A1 - p1.^2*B1;109n1 = (p1^2*G1)/(2*w); n2 = (p2^2*G2)/(2*w);pp1 = (p1^2 - n1^2)^0.5; pp2 = (p2^2 - n2^2)^0.5;%%**t0 = 8; %время пускаt_ost1 = 15;%время остановкиt_eks1 = 60;%время эксплуатацииt_eks = t0 + t_eks1;t_ost = t_eks + t_ost1;a = w/t0;%%**ti = round(t0/ts,0)*ts;t1 = round(t0/ts,0);tii = round(t_eks/ts,0)*ts;t2 = round(t_eks/ts,0);tiii = round(t_ost/ts,0)*ts;t3 = round(t_ost/ts,0);t_kon = t_ost + 5; %0.01..5tiv = round(t_kon/ts)*ts;t4 = round(t_kon/ts);b = w/(tiii - tii);%%**t_st = 1:t1-1; t_wkn = t1:t2; t_stp = t2-1:t3; t = ts:ts:tiii;for i1 = 1:t3if i1 < t1t = ts*i1;qta(i1) = q0*((a*t/w).^2).*sin(a*(t.^2)/2);elseif i1 >= t1 & i1 <= t2110t = ts*i1;qtb(i1) = q0*sin(w*t);elseif i1 > t2 & i1 <= t3t = ts*i1;qtc(i1) = q0/(w.^2)*((w-b*(t-tii)).^2).*sin(w*t-b/2*(t-tii).^2);endendqts = [qta,qtb,qtc];i4 = t3+1:t4;qtd = zeros(1,numel(i4));%%creates zero array because qt1 = 0 for 't3 to t4'qtr = [qts(qts~=0),0];%%complete array of qt1 covering 'ts:ts:tiii' and '0'%%**tr = ts:ts:ts*numel(qtr);for i1 = 1:numel(tr) %t3..t4t = tr(i1);qt1 = qtr(i1);F1(i1) = ts*qt1.*sin(pp1*t).*exp(n1*t);F2(i1) = ts*qt1.*cos(pp1*t).*exp(n1*t);F3(i1) = ts*qt1.*sin(pp2*t).*exp(n2*t);F4(i1) = ts*qt1.*cos(pp2*t).*exp(n2*t);endt=tr;FF1 = cumsum(F1);FF2 = cumsum(F2);FF3 = cumsum(F3); FF4 = cumsum(F4);ta = t+0.5*ts;% ta = t;d1 = exp(-n1*ta).*sin(pp1*ta); d2 = exp(-n1*ta).*cos(pp1*ta);d3 = exp(-n2*ta).*sin(pp2*ta); d4 = exp(-n2*ta).*cos(pp2*ta);I_1 = (d1.*FF2 - d2.*FF1)/pp1; I_2 = (d3.*FF4 - d4.*FF3)/pp2;pp = [pp1,pp2];p = [p1,p2]; n = [n1,n2];111for i = 1:dffor r = 1:2if i*ss == 1T(i,r) = (1 + s1 - (p(r))^2/(h1*p01^2))*(-1)^(r+1);elseif i*ss == 2T(i,r) = (-1)^(r+1);elseif i*ss == 4T(i,r) = (1 - (p(r)/p01)^2)*(-1)^(r+1);endendfor i1 = 1:numel(t)ys(i,i1) = N1*(T(i,1)*I_1(1,i1) + T(i,2)*I_2(1,i1));endendT22_1 = T(i,1); T22_2 = T(i,2);if ss == 1y1 = ys(1,:) ; y2 = ys(2,:);% plot(t,y1);title('y1; ss = 1');figure% plot(t,y2,'g');title('y2; ss = 1');elseif ss == 2y1 = ys(1,:); y2 = ys(2,:);% plot(t,y1);title('y1; ss = 2');figure% plot(t,y2,'g');title('y2; ss = 2');end% %Линейное перемещение m1zlin_a = y2; %Линейное перемещение m2%нелинейный расчет112zz = find(abs(zlin_a) >= z0); %values of zlin_a > z0sj = zz(1,1)-1;%first position(-1) of values > z0zlin_b = zlin_a(1,sj:end); %linear values for non-lin calculationz_sj = numel(zlin_a) - numel(zlin_b);tj = t(sj);tzlin_b = tr(sj:end);%%time of NL analysis, checkqr = qtr(sj:end);%I_a = I_1(sj:end); I_b = I_2(sj:end);%% linear part of nonlinear graphtw = tr(1:sj);lin = zlin_a(1:sj);% plot(tw,lin);FFa(1,1) = 0;FFb(1,1) = 0; FFa(2,1) = 0;FFb(2,1) = 0; zful(1) = zlin_a(sj+1);for r = 1:2for i1 = 2:numel(zlin_b)t2 = ts*i1;t2a = ts*i1+0.5*ts;%t2a = t2;i2 = 1; % счетчик итерацийif zlin_b(i1) >= 0; z01 = z0;elseif zlin_b(i1)< 0; b=2; z01 = -z0;endif i1 == 2;A=1;fz(1) = k3*(zlin_b(2) - z01);elseif i1 > 2;B = 2;113zlin_b(i1);zn = [0,znl2(znl2~=0)];zn(1,end);%znl2(1,end)% okzful2 = zlin_b(i1) - zn(1,end);fz(i1-1) = k3*(zful2 - z01);end%%**Fa(r,i1) = ts*qr(i1-1).*sin(pp(r)*(t2)).*exp(n(r)*(t2));%FFa(r,i1) = FFa(r,i1-1)+Fa(r,i1);Fb(r,i1) = ts*qr(i1-1).*cos(pp(r)*(t2)).*exp(n(r)*(t2));FFb(r,i1) = FFb(r,i1-1)+Fb(r,i1);%%**hHa_1(r,i1) = ts*fz(i1-1).*sin(pp(r)*(t2)).*exp(n(r)*(t2));Ha_1(r,i1) = hHa_1(r,i1-1)+hHa_1(r,i1);hHb_1(r,i1) = ts*fz(i1-1).*cos(pp(r)*(t2)).*exp(n(r)*(t2));Hb_1(r,i1) = hHb_1(r,i1-1)+ hHb_1(r,i1); aa1 = size(Hb_1);d1(r,i1) = exp(-n(r)*t2a).*sin(pp(r)*t2a);d2(r,i1) = exp(-n(r)*t2a).*cos(pp(r)*t2a);%%**sw1(r,i1) = (d1(r,i1).*FFb(r,i1) - d2(r,i1).*FFa(r,i1));sw2(r,i1) = (d1(r,i1).*Hb_1(r,i1) - d2(r,i1).*Ha_1(r,i1));zlin_b(1,i1);if abs(zlin_b(1,i1)) >= z0;aa = 1;L1(r,i1)= (sw1(r,i1)+ sw2(r,i1))/pp(r); %like I_1 & I_2elseif abs(zlin_b(1,i1)) < z0;114bb = 2;L1(r,i1)= sw1(r,i1)/pp(r);endLa(i1) = L1(1,i1);Lb = L1(end,:);for i = 1:dfif i*ss == 1T(i,r) = (1 + s1 - (p(r))^2/(h1*p01^2))*(-1)^(r+1);elseif i*ss == 2T(i,r) = (-1)^(r+1);elseif i*ss == 4T(i,r) = (1 - (p(r)/p01)^2)*(-1)^(r+1);endys(i,i1) = N1*(T(i,1)*La(1,i1) + T(i,2)*Lb(1,i1));endif ss == 1y1 = ys(1,:) ; y2 = ys(2,:);elseif ss == 2y1 = ys(1,:); y2 = ys(2,:);endznl = y2;zful(i1)= zlin_b(i1) - znl(i1);z(i1) = zful(i1);%%end here for first iteration values% plot(t,y2,'g');title('y2; 1st iteration');figureerr = 1;while err > 0.03;115itr = 4;i2 = i2 + 1;if i2==2zful(1,end); fz = k3*(zful(1,end)- z01);elseif i2 > 2zful(i2-1); fz = k3*(zful(i2-1)- z01);endFa(r,i1) = ts*qr(i1-1).*sin(pp(r)*(t2)).*exp(n(r)*(t2));%FFa(r,i1) = FFa(r,i1-1)+Fa(r,i1);Fb(r,i1) = ts*qr(i1-1).*cos(pp(r)*(t2)).*exp(n(r)*(t2));FFb(r,i1) = FFb(r,i1-1)+Fb(r,i1);hHa_1(r,i1) = ts*fz.*sin(pp(r)*(t2)).*exp(n(r)*(t2));Ha_1(r,i1) = hHa_1(r,i1-1)+hHa_1(r,i1);hHb_1(r,i1) = ts*fz.*cos(pp(r)*(t2)).*exp(n(r)*(t2));Hb_1(r,i1) = hHb_1(r,i1-1)+ hHb_1(r,i1);d1(r,i1) = exp(-n(r)*t2a).*sin(pp(r)*t2a);d2(r,i1) = exp(-n(r)*t2a).*cos(pp(r)*t2a);sw1(r,i1) = (d1(r,i1).*FFb(r,i1) - d2(r,i1).*FFa(r,i1));sw2(r,i1) = (d1(r,i1).*Hb_1(r,i1) - d2(r,i1).*Ha_1(r,i1));%%**if abs(zlin_b(1,i1)) >= z0;L1(r,i1)= (sw1(r,i1)+ sw2(r,i1))/pp(r);elseif abs(zlin_b(1,i1)) < z0;L1(r,i1)= sw1(r,i1)/pp(r);endLa(i1) = L1(1,i1); %like I_1Lb = L1(end,:); %like I_1116for i = 1:dfif i*ss == 1T(i,r) = (1 + s1 - (p(r))^2/(h1*p01^2))*(-1)^(r+1);elseif i*ss == 2T(i,r) = (-1)^(r+1);elseif i*ss == 4T(i,r) = (1 - (p(r)/p01)^2)*(-1)^(r+1);endys(i,i2) = N1*(T(i,1)*La(1,i1) + T(i,2)*Lb(1,i1));endif ss == 1y1 = ys(1,:) ;y2 = ys(2,:);elseif ss == 2y1 = ys(1,:);y2 = ys(2,:);endznl2(i2) = y2(i2);zful(i2)= (zlin_b(i1) - znl2(i2)); % for finding fz of iterative steps i2 > 2% err = abs(znl2(i2) - znla(1,end))/znl2(i2);err(r) = 0.035 - 0.001*i2 ;znl(i2) = znl2(i2); %for calculating error;zful2(i2) = zful(i2); %final value, sending to z for print out.end% Итоговые значения перемещенийznl2(i1)= znl2(i2); %for finding fz of time steps i1>2znl3(i1)= znl2(i2);z(i1) = zful2(i2);ya(i1) = y1(i1);117endend%tg = t(1,sj:end);z1 = [lin,z];if ss == 1% plot(tr,yy1), title('y1lin; ss = 1'),grid on;figure %лин перемещение m1plot(tr,zlin_a), title('y2lin; ss = 1'),grid on;figure %лин перемещение m2plot(tg,ya,'y');title('y1; ss = 1'),grid on;figureplot(tw,lin),grid on; hold onplot(tg,z,'g');title('y2; ss = 1'),grid on; hold off;%figureelseif ss == 2plot(tr,zlin_a), title('y2lin; ss = 2'),grid on;figure %лин перемещение m2plot(tg,ya,'y');title('y1; ss = 2'),grid on;figureplot(tw,lin),grid on; hold onplot(tg,z,'g');title('y2; ss = 2'),grid on; hold offend%%**z1 = [lin,z]; z2 = zlin_a; yy = [lin,ya];z_pusk1 = max(abs(yy(t_st)));z_ost1 = max(abs(yy(t_stp)));z_pusk2 = max(abs(z1(t_st)));z_ost2 = max(abs(z1(t_stp)));toc.