183307 (743406)

Файл №743406 183307 (Математическое моделирование в сейсморазведке)183307 (743406)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

35


Лекция 1

Введение

Метод математического моделирования получил распространение в сейсморазведке примерно с середины 60-х годов. Использование синтетичес­ких сейсмограмм (СС), являвшихся результатом решения одномерной динамической задачи, имело следующий цели:

  • анализ процесса формирования поля отраженных волн в тонкослоистой среде

  • оценку роли многократных волн в этом поле

  • определение сейсмических эффектов, обусловленных изменением литологии или углеводородосодержания и др.

В целом это позволило получить важные для практики интерпретации выводы о том, какие особенности и признаки нужно искать на реальной сейсмозаписи при изучении того или иного геологического объекта.

Переход к двумерному сейсмическому моделированию, т. е. к исполь­зованию синтетических временных разрезов (СВР), означал не просто увеличение количества синтезируемых трасс, а качественно новый уровень реализации метода моделирования. Речь идет об открывшейся возмож­ности применения математического моделирования непосредственно в процессе интерпретации данных сейсмических наблюдений

К началу 80-х годов сложилась следующая классификация видов сейсмомоделирования.

  1. Структурное моделирование. Обычно такое моделирование осуществ­ляется путем прослеживания лучей, что позволяет воспроизвести истинный путь сейсмических волн при пересечении границ напластований, установить точную связь между временем и глубиной и понять причины своеобразного отображения определенных структурных форм на временном разрезе. С по­мощью структурного моделирования могут производиться оценка и учет влияния вышележащих толщ на кинематику сейсмических волн в интересую­щем (перспективном) диапазоне времен или глубин при решении страти­графических задач.

  2. Стратиграфическое моделирование. Первоначально применялось с целью получить оценку влияния залежей нефти и газа, выклинивающихся слоев, зон литолого-фациального замещения и других неоднородностей на такие характеристики сейсмической записи, как изменение амплитуд, искажение вышезалегающих горизонтов, изменение полярности, понижение скорости, наличие и расположение дифрагированных волн. Структурные формы здесь менее важны, а упругие параметры горных пород, наоборот, являются очень важными и решающими. В последнее время стратиграфическое моделирование успешно применяется для обнаружения и подтверждения залежей углеводородов, определения литологии пород, связанных с этими залежами, границ распространения залежей и др.

  3. Моделирование сейсмических скоростей. Вначале такое моделирова­ние получило распространение в связи с необходимостью оценки влияния кривизны отражающих и промежуточных границ и локальных неоднородностей на поле сейсмических скоростей или, другими словами, для анализа отклонений параметра VОГТ реальных скоростей в среде. Впоследствии были осуществлены удачные опыты использования этого вида моделирова­ния в качестве основы в методах решения обратных кинематических задач для многослойных сред с криволинейными границами раздела и с градиен­тами скоростей в слоях.

Кроме того, двумерное сейсмомоделирование стало эффективно исполь­зоваться и на этапе обработки сейсмической информации для решения таких задач, как:

  • расчет статических и кинематических поправок в условиях неоднородностей в верхней части разреза,

  • тестирование новых программно-алгоритмических средств,

  • синтез оптимальных графов обработки.

Глава 1.Общие принципы интерпретации данных сейсморазведки на основе математического моделирования

Раздел 1.1.Системный анализ проблемы интерпретации данных сейсмических наблюдений

В соответствии с методологическим принципом системного подхода представим объект нашего изучения (процесс интерпретации данных сей­смических наблюдений) в виде целостной системы взаимодействующих эле­ментов (верхняя часть рис. 1, а).

Будем называть интерпретацией данных сейсмических наблюдений про­цесс построения сейсмогеологической модели, которая не противоречит имеющейся априорной информации (наблюденному волновому полю, данным промысловой геофизики, геологической информации) и опыту гео­физика-интерпретатора. Из этого определения следует несколько важных методологических выводов:

  1. процесс интерпретации является целенаправленным и поэтому должен быть управляемым;

  2. в процессе интерпретации необходимо сопоставлять имеющуюся в данный момент сейсмогеологическую модель с априорными данными (в первую очередь с наблюденным волновым полем) на предмет анализа их противоречивости и нахождения способов ее устранения;

  3. ввиду невозможности непосредственного сопоставления таких разно­родных объектов, как сейсмогеологическая модель и наблюденное волно­вое поле, в процессе интерпретации необходимо решать прямую задачу, т.е. вычислять волновое поле по сейсмогеологической модели.

Таким обра­зом, математическое моделирование становится неотъемлемой частью технологии интерпретации.

Конкретизируя схему рис. 1, а, получаем схему интерпретации данных сейсморазведки на основе математического моделирования, представлен­ную на рис. 1, б. Она включает операции шести уровней.

I уровень получение исходной информации в результате геофизи­ческих измерений и сбора априорных геологических данных.

II уровень – обработка и анализ указанной информации с различ­ными целями. Полевые данные сейсморазведки обрабатываются в целях получения

  • годографов;

  • горизонтальных спектров скоростей или графи­ков VОГТ;

  • окончатель­ного временного разреза, который должен содержать минимум помех и искажений и максимум объективной информации о строении среды.

Данные промысловой геофизики обрабатываются главным образом для получения эффективной по сейсми­ческим критериям одномерной сейсмической модели. Наконец, важнейшую роль, определяющую впоследствии все решения геофизика-интерпретатора, играет предварительно выработанная гипотеза о строении разреза, не про­тиворечащая имеющимся геологическим представлениям.

III уровень состоит в создании исходной для итеративного процес­са интерпретации двумерной сейсмогеологической модели или модели нулевого приближения. Эта операция в принципе неформальна и требует максимального использования всей доступной информации I и II уровней. На этом же уровне производится выбор импульса, моделирующего сейсми­ческий сигнал (моделирование сейсмического сигнала).

На IV уровне для получения модельных аналогов промежуточных и окончательных результатов обработки полевых данных сейсморазведки решаются прямые задачи сейсморазведки.

V уровень – операции сравнения промежуточных и окончательных результатов обработки с их модельными аналогами, имеющие целью коли­чественную оценку сходства между ними.

VI уровень в рассматриваемой схеме представляют процессы принятий по коррекции параметров в общем случае всех операций уровней II–V. В частности, при наименее "глубокой" обратной связи корректируются параметры сейсмомоделирования, т. е. сейсмогеологическая модель и модель импульса падающей волны. Исходными данными для принятия таких решении являются оценки сходства ("рассогласования"), полу­чаемые на уровне V.

Раздел 1.2.Теоретические вопросы автоматизированной интерпретации данных сейсморазведки

Лекция 2

Таблица 1. Влияние параметров двумерного сейсмомоделирования
на характеристики отражений

Кинематические и
динами­ческие характеристики от
ражений

Параметры

А. Определяемые по отдельным трассам синтетического временного разреза

1. Время отражения

  1. Локальные мощности пластов вышележащей толщи

  2. Локальные скорости в пластах вышележащей толщи

  3. Геометрия отражающей и промежуточных границ

2. Амплитуда отражения

  1. Дифференциация скоростей и плотностей соседних слоев

  2. Мощности слоев

  3. Количество слоев, участвующих в формировании отражен­ной волны

  4. Геометрия отражающей и промежуточных границ

  5. Частота исходного сигнала

3. Преобладающая частота отражения

  1. Частота исходного сигнала

  2. Мощности слоев

  3. Количество слоев, участвующих в формировании отражен­ной волны

  4. Величины частотно-зависимого коэффициента поглощения

4. Полярность отражения

  1. Полярность исходного сигнала

  2. Порядок чередования слоев

  3. Тип насыщающего флюида

5. Форма отражения:

а) длительность волны, выраженная ко­ли­че­ством фаз

  1. Количество слоев, участвующих в формировании отражен­ной волны

  2. Мощности слоев

  3. Ширина спектра исходного сигнала

  4. Частота исходного сигнала

б) соотношение ампли­туд экстремумов (форма оги­ба­ю­щей)

  1. Форма огибающей исходного сигнала

  2. Количество слоев, участвующих в формировании отражен­ной волны

  3. Дифференциация скоростей и плотностей соседних слоев

  4. Мощности слоев

Б. Определяемые по синтетическому временному разрезу

6. Поведение линий t0

  1. Геометрия отражающей и промежуточных границ

  2. Скорости и величины их градиентов в пластах вышележа­щей толщи

  3. Мощности пластов вышележащей толщи

7. Интерференция

а) изменение времени между соседними фазами отражения

  1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны

  2. Градиент изменения скоростей слоев, участвующих в формировании отраженной волны

б) изменения амплиту­ды отдельных фаз отражения (измене­ние формы огибаю­щей)

  1. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны

  2. Криволинейность границ, участвующих в формировании отраженной волны

8. Когерентность

  1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны

  2. Градиент изменения скоростей слоев, участвующих в фор­мировании отраженной волны

  3. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны

  4. Криволинейность границ, участвующих в формировании отраженной волны

9. Расположение и интенсивность дифрагирован­ных волн

  1. Наличие и местоположение объектов дифракции (точки выклинивания, примыкания; тектонические нарушения; резкие перегибы слоев, радиус кривизны которых меньше длины волны; участки резкого изменения пластовых пара­метров и т. п.)

  2. Дифференциация скоростей и плотностей в дифрагирующих телах и вмещающих породах

Глава 2.Способы построения сейсмических моделей геологических сред

Предметом нашего рассмотрения являются волновые поля, образую­щиеся в многослойных средах в случае применения источника, возбуж­дающего преимущественно продольные волны, наблюдения отраженных волн при достаточно малых углах падения на границы раздела и регистра­ции только вертикальных компонент смещения. При моделировании таких волновых полей достаточно задавать в слоях модели следующие пара­метры: скорость продольных волн Vp, плотность и коэффициент погло­щения продольных волн p. Поле продольных отраженных волн будет определяться в этом случае только данными параметрами, а распределение параметров поперечных волн не будет играть существенной роли. Вслед­ствие допущения о малых углах падения волны на границы раздела анизо­тропия скоростей также не учитывается.

В большинстве случаев для построения двумерных моделей использует­ся информация двух видов: высокоточная, но разреженная по площади геолого-геофизическая информация по разведочным скважинам и менее точная, но существенно более плотная сейсмическая информация между скважинами. Первая позволяет получить достоверные оценки физических свойств разреза в отдельных точках, т. е. построить одномерные модели. С помощью второй информации осуществляется переход к двумерным моделям.

Раздел 2.1.Построение одномерных моделей

Исходная информация, т. е. значения детальных скоростей и плотностей, для построения одномерных тонкослоистых моделей может быть получена несколькими способами:

  1. По данным акустического (АК), гамма-гамма (ГГК) или гравита­ционного каротажей после соответствующей их обработки; обработка АК обычно включает процедуры вычисления скоростей с учетом кавернометрии, коррекции полученных скоростей по сейсмическому каротажу (СК), осреднения и др.; ГГК дает сразу плотность, поэтому обработка его заключается только в осреднении.

  2. При отсутствии АК или ГГК, а также при низком их качестве акусти­ческие свойства разреза прогнозируются с использованием других широко рас­пространенных промыслово-геофизических характеристик: кажущегося сопротивления (k), интенсивности первичного (ГК) и вторичного (НГК) гамма-излучения и др.

  3. Для приближенного задания акустических параметров тонких слоев иногда используются нормальные или обобщенные зависимости скорости и плотности от глубины для пород различной литологии.

Кроме того, информация о детальном распределении скоростей и плот­ностей в разрезе может быть получена по данным изучения керна, однако эти данные следует использовать только в тех случаях, если измерения про­водились в условиях, близких к пластовым.

Из перечисленных способов предпочтение следует отдать использованию данных АК и ГГК.



Осреднение данных АК и ГГК

Большое количество данных АК, накоп­ленное к настоящему времени, подт­верждает представления о тонкослоистой структуре реального скорост­ного разреза. Практически все осадочные породы, за редким иск­лючением (чистая соль, лед), имеют тонкослоистую структуру с той или иной степенью скоростной дифференциации.

Характеристики

Тип файла
Документ
Размер
375 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6730
Авторов
на СтудИзбе
284
Средний доход
с одного платного файла
Обучение Подробнее