183307 (743406), страница 2
Текст из файла (страница 2)
Исходные непрерывные скоростные и плотностные разрезы, характеризующиеся высокой детальностью, не могут быть приняты в качестве одномерных моделей, по которым в дальнейшем предстоит построить двумерную модель. Тем или иным способом производится их осреднение и построение максимально упрощенной однородно-слоистой (или тонкослоистой) модели среды. Такая модель представляется в виде серии тонких однородных пластов, разделенных границами первого рода. При построении тонкослоистых моделей предполагается, что акустическая неоднородность, обусловленная внутренней изменчивостью пород пласта, незначительна по сравнению с межпластовой акустической неоднородностью, связанной с изменением литологии или типа насыщения.
Способ осреднения с порогом. Применение его позволяет получить тонкослоистую модель в виде серии однородных слоев большей мощности по сравнению с исходным разрезом. Все границы в модели представляются границами первого рода. Сущность алгоритма осреднения в данном способе заключается в том, что по заданным V – величине значимой скоростной дифференциации и min – минимальной временной мощности слоев из разреза исключаются тонкие слои, время пробега в которых ti < min, объединяются слои с номерами i и i-1, если разница скоростей в них удовлетворяет условию
|Vi – Vi–1| V
Значение скорости в объединенном слое вычисляется как среднее из Vi и Vi-1. Пороговое значение скачка скорости V может быть различным для разных частей разреза.
Изменяя V, можно менять число слоев в модели N, так как оно тем меньше, чем больше V. Это может быть использовано для автоматического поиска моделей с числом слоев, находящихся в заданных пределах Nmin – Nmax.
Раздел 2.2.Построение двумерных моделей
Рассмотрим методику построения двумерных сейсмогеологических моделей, представляющих собой комбинацию толстослоистых толщ (покрывающей и подстилающей) и собственно моделируемого интервала в виде совокупности тонких слоев. Чтобы условия интерференции волн на верхней и нижней границах моделируемого интервала не отличались от реальных, необходимо этот интервал расширить вверх и вниз на величину не менее (длина волны). Пример комбинированной модели представлен на рис. 8, д.
Такие модели используются, как правило, при решении стратиграфических задач, в которых объектами исследования могут быть зоны выклинивания и фациального замещения, залежи углеводородов и др. При этом моделируемый интервал должен совпадать с объектом исследований. Желательно, чтобы в пределах моделируемого профиля имелось две-три опорные точки, в которых по данным глубоких скважин заданы одномерные модели. Когда на профиле или вблизи него нет глубоких скважин, то в принципе возможно построение достаточно детальных моделей только по данным сейсморазведки.
Выбор комбинированного типа моделей для описания способов построения самых разнообразных в целевом отношении двумерных моделей оправдан тем, что:
-
во-первых, такая модель получила наибольшее распространение в практике моделирования и,
-
во-вторых, излагаемые ниже способы пригодны как для построения толстослоистых моделей (используемых при решении прямых и обратных кинематических задач), так и для построения тонкослоистых моделей по всему разрезу (используемых при решении прямых и обратных динамических задач).
Однако на практике последние строятся очень редко из-за крайней трудоемкости построения таких моделей в двумерном варианте. Поэтому тонкими слоями задается ограниченный интервал, т. е. и в этом случае приходится иметь дело с комбинированной моделью.
При построении покрывающей толстослоистой части комбинированной модели, как правило, используется традиционный сейсмический разрез. При этом желаемым является условие: форма границ и значения скоростей в пластах должны быть такими, чтобы сохранялись кинематические годографы основных отраженных волн, а границам приписаны те коэффициенты отражения, которые получаются при расчетах с учетом их тонкослоистой структуры при определенной форме волны. В некоторых случаях покрывающая толща может задаваться в виде одного или двух пластов с эффективными параметрами или с искусственно подбираемыми скоростями и толщинами, при которых совпадали бы времена отражений на синтетическом и реальном временных разрезах в пределах моделируемого интервала
§ 2.2.1.Построение модели по данным бурения
При отсутствии данных сейсморазведки, т. е. в задачах предварительной оценки сейсмических аномалий, обусловленных особенностями геологического строения разреза (нефтегазоносность, фациальные замещения, выклинивания и др.), двумерные модели наиболее просто строятся путем линейной интерполяции свойств среды и положения границ в области между разведочными скважинами.
Метод линейной интерполяции достаточно точен в том случае, если период изменений используемых для моделирования геолого-геофизических характеристик больше расстояния между скважинами. В подавляющем большинстве случаев это условие не выполняется, и линейная интерполяция является лишь наиболее простым решением из множества вариантов увязки одномерных моделей по соседним скважинам.
§ 2.2.2.
Лекция 3
Построение моделей по данным бурения и сейсморазведкиНаличие сейсмических временных разрезов позволяет отказаться от линейной интерполяции и осуществить построение модели с помощью следующих приемов:
-
Производится тщательная стратиграфическая привязка отраженных волн в точках глубоких скважин, причем наиболее надежная привязка осуществляется по временному разрезу, в который "врезаны" диаграммы скорости по АК в масштабе двойного времени и синтетические сейсмограммы.
-
На сейсмическом разрезе границы путем параллельного переноса точно совмещаются в точках расположения скважин с теми геологическими границами, которые определены в результате стратиграфической привязки (см. п. 1) как доминирующие при формировании отраженной волны. Если по какой-либо скважине получается невязка, то она "разбрасывается" по линейному закону в глубины сейсмической границы между скважинами.
-
На полученный в результате такой коррекции сейсмический разрез, который можно назвать базисной толстослоистой моделью, в точках расположения скважин наносятся тонкослоистые модели, соответствующие моделируемому интервалу. В пределах моделируемого интервала проводятся границы отдельных литологически однородных тонких слоев. При этом в зависимости от предполагаемой степени сложности двумерной модели подходы к ее построению могут быть различными. В зонах выдержанной корреляции сейсмических данных, которые, как правило, соответствуют согласному или близкому к нему залеганию пород, эти границы проводятся так, чтобы они соединяли отметки по скважинам и были параллельны сейсмическим границам между скважинами. Участки изменений сейсмических данных (схождение осей синфазности, изменения формы и интенсивностей колебаний, разрывы в корреляции) тщательно анализируются и с учетом данных по скважинам задаются возможные модели изменений мощности слоев, литолого-фациальных замещений, появления углеводородов и др. Нередки случаи, когда в пределах одного моделируемого интервала встречаются участки различной сложности.
-
Задаются упругие параметры (скорости и плотности) во всех слоях модели, при этом в точках между скважинами эти параметры находятся путем линейной интерполяции значений, полученных ранее в процессе формирования одномерных моделей в точках расположения скважин.
§ 2.2.3.Построение моделей по данным сейсморазведки
Если на профиле нет скважин, то модель может быть построена только по сейсмическим данным. В этом случае целесообразно применять такие процедуры.
-
На основе кинематической интерпретации временного разреза строится базисная толстослоистая модель. Используемые при этом средние и пластовые скорости берутся из данных скоростного анализа, а в условиях Волго-Уральской провинции – чаще из интерполированных или экстраполированных сейсмокаротажных данных.
-
Интервал временного разреза, соответствующий моделируемому объекту, преобразуется во временной разрез волновых сопротивлений по методике псевдоакустического каротажа (ПАК).
-
В ряде точек профиля строятся одномерные модели волновых сопротивлений. Затем от волновых сопротивлений с использованием формулы =аVb, где – плотность, V – скорость, переходят к оценкам скорости и плотности. Полученные таким способом одномерные модели скорости целесообразно проверять на соответствие со значениями пластовых скоростей, взятыми из интерполированных или экстраполированных сейсмокаротажных данных.
-
Одномерные тонкослоистые модели наносятся на базисную толсто-слоистую модель, после чего, так же как и в предыдущем параграфе, строится комбинированная двумерная модель.
Необходимо отметить, что из-за использования только сейсмических данных, имеющих ограниченный частотный диапазон, тонкослоистую часть комбинированной модели следует рассматривать как эффективную сейсмическую модель.
Если полученные по описанным выше методикам двумерные модели предполагается использовать для интерпретации в итеративном режиме, то их целесообразно называть моделями нулевого приближения (моделями 0-приближения).
§ 2.2.4.Влияние нефтегазонасыщенности на упругие свойства пород
Сведения об изменении упругих свойств (скорости и плотности) пород-коллекторов в зависимости от типа насыщающего флюида можно получить прямым измерением в скважинах, расположенных в контуре залежи и за контуром, изучением керна при различном его насыщении, путем теоретических расчетов.
Прямые измерения в скважинах с помощью сейсмического просвечивания и СК выполнены в ограниченном объеме и полученные результаты не всегда достаточно точны. Обобщение данных показывает, что в нефтенасыщенных песчаных коллекторах при глубинах 1500–3000 м и средней пористости 20% скорость продольных волн уменьшается на 6–12%, в газонасыщенных коллекторах – на 15–30% по сравнению с водонасыщенным коллектором.
При измерениях на ультразвуковых частотах (АК) величина различия скоростей, обусловленная водо- и нефтегазонасыщенностью пород, меньше, чем на сейсмических частотах. Поэтому использование данных об уменьшении скоростей при нефтегазонасыщении, полученных на ультразвуковых частотах (в скважинах или на образцах керна), для модельных расчетов в сейсмическом диапазоне частот возможно лишь после их коррекции. Удвоение величин понижения скорости будет, по-видимому, вполне допустимым. Данных об изменении плотности при различном насыщении коллектора, которые были бы получены путем прямых измерений в скважинах, пока не имеется.
При отсутствии данных прямых измерений на керне или в скважине (или если эти данные недостаточно надежны) влияние нефтегазонасыщения на скорость и плотность может быть оценено теоретически, с помощью формул из теории распространения упругих волн в пористых средах. Для определения скорости продольных волн в сейсмическом диапазоне частот используется уравнение
где Uп и п – параметры, зависящие соответственно от упругости и плотности флюида; Uск и ск – параметры, характеризующие упругость и плотность скелета (остова) породы.
Значения U и следующим образом выражаются через свойства твердого материала породы и насыщающего ее флюида:
-
ск = тв (1 – Kп), где тв – плотность материала, слагающего твердую фазу породы, Kп – пористость;
-
п = ф Kп, где ф – плотность флюида, т. е. плотность воды, нефти, газа или их смеси;
-
, где ск – сжимаемость скелета (относительное изменение объема скелета при всестороннем упругом сжатии породы), Gск – модуль сдвига скелета;
где тв – сжимаемость материала, слагающего скелет породы, ф – сжимаемость флюида, величины тв и ск связаны соотношением ск = тв + Kпп (п – сжимаемость порового пространства).
При использовании формулы (2.1) основная трудность заключается в выборе величин ск и Gск.













