183307 (743406), страница 4
Текст из файла (страница 4)
Лекция 5
Рассмотренные модели являются достаточно "трудными" для расчетов по лучевому методу, но следует учитывать, что соответствующие этим моделям реальные геологические объекты в Волго-Уральской провинции составляют не более 10-20 % от общего числа нефтегазоперспективных объектов. Кроме того, сравнение результатов моделирования для ряда других, менее сложных моделей (антиклинальные складки и флексурообразные перегибы слоев, тонкослоистая пачка с нерезким изменением толщин слоев или с плавно выклинивающимся одним слоем, выступы кристаллического фундамента с выклиниванием слоев в примыкающих отложениях, верейские и довизейские врезы с нерезкой морфологией и др.) показывает, что временные разрезы, рассчитанные в лучевом приближении и по волновой теории, практически идентичны. В связи с этим применение лучевого метода при модельных расчетах с целью интерпретации может быть достаточно широким и полезным. Однако если в моделях имеются такие элементы, как тектонические нарушения, неоднородности с горизонтальными размерами, меньшими зоны Френеля, резкие перегибы слоев с радиусом кривизны, меньшим длины волны, и если при интерпретации используются в количественной форме динамические характеристики записи (например, при решении задач ПГР), то следует пользоваться более точными методами.Раздел 3.3.Выбор исходного сейсмического импульса
Результатом решения прямой динамической задачи обычно является СВР в виде импульсных сейсмотрасс, которые затем подвергаются свертке с импульсом, моделирующим сейсмический сигнал. Успех использования СВР для целей интерпретации во многом определяется правильным выбором начального приближения этого импульса.
В связи с этим в практике моделирования применяется следующая методика выбора сейсмического импульса. Основой этой методики является аналитическое выражение импульса Пузырева
где a0 – начальная амплитуда (обычно a0 = 1); 0 = 2f0 – преобладающая частота, Гц; р – затухание; – начальная фаза.
Определение начального приближения параметров этого импульса (0, p, ) производится следующим образом. Начальная фаза принимается равной /2 (симметричный импульс) на основании того, что в процессе обработки реальных сейсмических записей в результате применения всех видов фильтраций (деконволюция, полосовая фильтрация) стремятся на выходе получить элементарный сигнал симметричной формы (нуль-фазовый).
Преобладающая частота f0 находится по спектру мощности реальных записей, для чего в заданном фрагменте временного разреза по всем трассам вычисляются нормированные автокорреляционные функции, которые затем осредняются, в результате чего получается одна функция
. Для этой функции, предварительно сглаженной, вычисляется спектр мощности. Квадратный корень из этого спектра принимается за осредненный амплитудный спектр сейсмического импульса. Этот спектр нормируется, и по нему находятся два параметра: преобладающая частота f0 и ширина спектра f на уровне 0,7.
Для определения параметра затухания р используется аналитическое выражение для нормированного амплитудного спектра импульса (3.1) в виде
Вначале по этой формуле при известном 0 = 2f0 и p = 5000 вычисляется амплитудный спектр теоретического импульса (3.1), по которому также на уровне 0,7 оценивается ширина спектра f(1) (первая итерация). Это значение f(1) сравнивается с определенным по спектру реальных сейсмозаписей значением f, и если f(1) > f, то первоначальное р уменьшается, и наоборот. С новым значением р опять вычисляется по формуле (3.2) спектр (), по которому находится новое значение f(2) (вторая итерация) и т. д. Шаг изменения по р вначале принимается равным 1000, а после получения "вилки" он уменьшается до тех пор, пока не будет выполнено условие |f(i) – f| 2 Гц, тогда значение р фиксируется.
Полученные оценки 0 и p, а также принятое значение = /2 используются для расчета по формуле (3.1) весовых коэффициентов фильтра для свертки с синтетическим временным разрезом в импульсном представлении.
Рассмотренная, методика предназначена для определения начального приближения параметров импульса, которое, как правило, является достаточно хорошим для параметров 0 и p, но принимаемая априори величина = /2 может быть весьма приближенной, поскольку на реальном временном разрезе сигнал может отличаться от нуль-фазового. Поэтому в дальнейшем в процессе итеративной коррекции параметров модели все три параметра импульса также корректируются.
Раздел 3.4.Сопоставление синтетического и
реального временных разрезов
В соответствии с общими принципами анализа двумерных изображений сопоставляемые объекты должны быть разбиты на элементарные единицы, называемые сегментами. В нашем случае (при сравнении РВР и СВР) это понятие обозначает наименьшие элементы (X, t), которые сохраняют физико-геологический смысл. Конкретно: сегменты, выделяемые на сопоставляемых временных разрезах, ограничиваются по оси t интервалом с одним или двумя опорными отражениями или таким интервалом между опорными отражениями, который может представлять самостоятельный интерес для моделирования, по оси Х – участком, который характеризуется примерно одинаковым характером записи и в определенной степени соответствует понятию сейсмофации, принятому в сейсмостратиграфии. Необходимо также отметить, что процедура сегментации, являясь неформальной в принципе, выполняется интерпретатором, а те соображения, которыми он руководствуется при выделении сегментов, создают для каждого из них свой контекст при сопоставлении реального и синтетического разрезов.
Наиболее естественной и наглядной являлась бы оценка, характеризующая в целом сходство соответствующих друг другу (т. е. имеющих один и тот же физико-геологический смысл) сегментов реального и синтетического разрезов. Однако для упрощения будем сопоставлять только участки трасс, входящих в указанные сегменты. Это позволяет свести двумерную (по Х и t) задачу оценки сходства к совокупности одномерных (только по t) задач. По существу предполагается при этом, что волновое поле квазистационарно по X-координате.
Переходя непосредственно к численному оцениванию сходства трасс РВР и СВР, прежде всего, выделим две группы таких оценок:
-
интегральные оценки, характеризующие общий вид сравниваемых объектов;
-
дифференциальные, характеризующие отдельные их элементы.
При оценивании сходства по интегральным критериям основной операцией является интегрирование с использованием полной информации об объектах, а по дифференциальным критериям – дифференцирование, которое применяется как к объектам в целом, так и к их частям. Конкретные виды критериев сходства трасс СВР и РВР рассматриваются ниже.
Отметим лишь одно, важное в методическом аспекте обстоятельство. Достаточно высокий уровень глобальных оценок сходства, построенных по интегральным и дифференциальным критериям, играет роль соответственно необходимого и достаточного условия достижения цели интерпретации. Это значит, что в процессе интерпретации при оценивании сходства с необходимостью нужно переходить от интегральных критериев к дифференциальным. Фактически это соответствует наращиванию степени детальности рассмотрения сравниваемых разрезов.
Так, при решении стратиграфических задач, вызывающих повышенный интерес в связи с проблемой прогнозирования геологического разреза, очевидно, нельзя заканчивать процесс интерпретации по достижению высокой степени сходства по интегральным критериям, поскольку геологическая сущность таких задач часто выражается в столь незначительных вариациях сейсмогеологической модели и соответствующего ей СВР, чувствительностью к которым обладают лишь дифференциальные критерии. Подобного рода чувствительность достигается усложнением процедуры оценивания сходства или построением этой процедуры на итеративно-диалоговых принципах, чем обеспечивается соответствие оценки сходства визуальным и геолого-геофизическим представлениям интерпретатора.
Из рис. 7, а видно, что применение интегральных критериев требует осторожности, поскольку здесь при очевидном отсутствии визуального сходства значение интегральной оценки довольно высоко (0,84). Рис. 7, б и в демонстрируют слабую чувствительность интегрального критерия к малоамплитудным (локальным) особенностям записи: если учесть форму последнего полупериода записи, трассы на рис. 7, 6 визуально более похожи между собой, чем трассы на рис. 7, в. Однако значения сходства по НФВК противоречат этому суждению. Рис. 7, г, д и е иллюстрируют тот факт, что числовые значения интегральных и дифференциальных оценок могут отличаться весьма существенно. Кроме принципиальной разницы в подходах к оцениванию сходства, это объясняется еще и тем, что при вычислении дифференциальных оценок учитывается качественная информация от геофизика-интерпретатора. Так, выполнив стратиграфическую привязку отражений, он может выделить отражения, являющиеся целевыми в решаемой им геологической задаче, и задать их как наиболее важные при оценивании сходства.
Главной методической целью получения оценок сходства является выделение на каждом шаге итеративного процесса интерпретации тех трасс СВР и РВР, сходство между которыми ниже принятого на данном шаге порога. Наличие протяженных участков СВР, характеризующихся пониженными значениями оценок сходства, указывает на необходимость коррекции соответствующего фрагмента сейсмогеологической модели (иногда вплоть до перехода к другой гипотезе о строении геологического разреза).
Раздел 3.5.Целенаправленная коррекция параметров
тонкослоистых моделей
Как и ранее, будем ориентироваться на класс комбинированных моделей геологических сред, введенный в гл. 2. Напомним, что такие модели состоят из собственно моделируемого интервала, представленного совокупностью тонких слоев, и толстослоистой покрывающей части. В число корректируемых параметров включаются скорости, плотности и мощности тонких слоев, а также параметры импульса, моделирующего сейсмический сигнал.
Из методических соображений разделим процесс оптимизации целевой функции, связывающей оценки сходства с параметрами сейсмомоделирования, на два этапа:
-
предварительная коррекция, выполняемая в диалоговом режиме, когда в процессе коррекции предполагается постоянное и непосредственное участие геофизика-интерпретатора;
-
уточнение параметров моделей в автоматическом режиме путем оптимизации некоторого функционала, описывающего сходство трасс реального и синтетического временных разрезов.
§ 3.5.1.Предварительная коррекция
На этапе предварительной коррекции осуществляется сравнительно грубый подбор параметров модели в диалоговом режиме. Наличие данного этапа позволяет не вводить каких-либо ограничений на величину отклонения параметров модели нулевого приближения от искомого решения. Но вместе с тем если при первой оценке сходства (визуальной или по НФВК) синтетического и реального временных разрезов обнаруживается явное их несходство, то ставится вопрос об изменении модели в целом или о переходе к другой гипотезе о геологическом строении разреза.
Методической основой предварительной коррекции являются следующие положения:
-
при коррекции используются данные о сравнительной чувствительности динамических характеристик записи к изменению параметров тонкослоистой модели, полученные с помощью метода статистических испытаний;
-
в целях ограничения области поиска глобального экстремума из первого этапа исключается и переносится на второй этап коррекция двух параметров исходного импульса (р, ) и в некоторых случаях коррекция толщин слоев;
-
для коррекции систематического отклонения толщин или скоростей в слоях, выражающегося в растяжении или сжатии трасс синтетического разреза, применяются формулы, которые учитывают значения первоначальной скорости и толщины слоя;
-
на каждом шаге коррекции используются результаты сравнения СВР и РВР по НФВК, которые в конце предварительной коррекции могут дополняться сравнением по частным критериям (графики амплитуд и энергий, частотные спектры и др.) или с помощью дифференциальной оценки сходства.
Рассмотрим подробнее перечисленные положения.
Лекция 6
Чувствительность динамических характеристик к изменению параметров моделиДля обеспечения целенаправленности и сходимости процесса коррекции желательно, чтобы интерпретатор, принимающий решения об изменении параметров модели, руководствовался набором некоторых методических положений.
В результате обработки и анализа относительных отклонений динамических характеристик отмечены следующие закономерности.
-
Из трех динамических характеристик сейсмической записи (Е, F0 и F) наиболее чувствительной к изменению параметров модели является энергия Е (например, при знакопеременном изменении плотности на 20% относительное изменение энергии в среднем в 8 раз выше, чем изменение ширины амплитудного спектра на уровне 0,7, и в 12 раз выше, чем изменение максимума частотного спектра F0.
-
Наиболее инертной (малочувствительной к изменению параметров модели) является преобладающая частота записи F0, например, при знакопеременном изменении плотностей, скоростей и мощностей слоев на 20% F0 изменяется в среднем на 4% при знакопеременном изменении толщин даже на 40% преобладающая частота F0 изменяется на 5%. Этот результат означает, что при интерпретации с помощью итеративного моделирования частота f0 должна уточняться на начальных шагах итеративного процесса коррекции.
-
Если изменение плотностей на одинаковую относительную величину во всех слоях и с одним знаком не изменяет самой СС и ее динамических характеристик, то аналогичное изменение скоростей, например на 20%, вызывает изменение Е в среднем на 30%, F на 14% и F0 на 11%. В данном случае при сравнительно невысоких средних отклонениях характеристик F и F0 наблюдается значительно большая их дисперсия по сравнению с дисперсией этих характеристик при другом характере изменения скорости или при изменении других параметров модели. Полученный результат интересен в тех случаях, когда известно, что пластовые скорости содержат систематические погрешности: их, очевидно, нужно устранять возможно раньше, на начальных шагах процесса коррекции.
-
Знакопеременное изменение плотностей, например на 20%, приводит к изменению энергии в среднем на 80%, F на 17% и F0 на 10%. Аналогичное изменение скоростей, однако, не приводит к заметно большему изменению указанных характеристик, хотя в этом случае изменяются не только коэффициенты отражения, но и времена вступления волн.
-
Знакопеременное изменение толщин слоев приводит к очень слабому изменению динамических характеристик записи. Например, при изменении толщин на 20% энергия Е изменяется в среднем на 12%, F на 7,5% и F0 на 3,5%. Необходимо подчеркнуть важность данного результата, поскольку согласно ему в процессе коррекции модели даже при значительном изменении положения промежуточных границ в тонкослоистой пачке (даже до 40-50% от толщины слоя) без существенного изменения общей ее мощности не следует ожидать заметного изменения динамических характеристик записи. Отсюда можно сделать вывод: коррекцию толщин слоев целесообразно оставлять на второй этап.
-
Изменение частоты исходного сигнала f0 на ±20% приводит к существенному изменению динамических характеристик: энергия Е изменяется в среднем на 38%, F на 18% и F0 на 26%, причем наблюдается значительная дисперсия этих отклонений. Данный результат подкрепляет сделанный ранее вывод о том, что коррекция преобладающей частоты f0 исходного импульса должна выполняться на первых шагах итеративного процесса коррекции.
Приведенные оценки относительных изменений динамических характеристик записи касаются в основном тех случаев, когда параметры модели изменялись на 20 и 40%; естественно, изменения параметров модели на 15, 10% и менее вызывают меньшие изменения характеристик записи, но линейной зависимости здесь нет.













