VANAD (739735), страница 3
Текст из файла (страница 3)
Синтезированы также нитрилхлориды ниобия и тантала, по составу аналогичные фосфонитрилхлоридам, но представляющие собой твёрдые кристаллические вещества. Жёлто-коричневый NNbCl2 отщепляет хлор около 450 °С, а жёлто-зелёный NTaCl2 — лишь при значительно более сильном нагревании. Из нитрилфторидов был получен NNbF2. Известен и нитрилхлорид состава Ta2N3Cl. Нитрилхлорид ванадия синтезирован по схемам:
VСl5 + ClN3 = Cl2 + VCl4N3 и VCl4N3 = N2 + Cl3VNCl
(он может быть получен и прямым взаимодействием VN с Cl2 при 130 °С). В отличие от полимерных нитрилгалогенидов тантала и ниобия это соединение (т. пл. 132 °С) мономерно и легко возгоняется. Для всех элементов подгруппы ванадия описаны двойные нитриды Li7ЭN4 (а для ванадия, кроме того, Li7VP4 и Li7VAs4).
Производные низших валентностей из рассматриваемых элементов более или менее характерны лишь для ванадия, Его тёмно-синий диоксид (VO2) имеет амфотерный характер (с преобладанием основных свойств над кислотными), а оба низших оксида — чёрные V2O3 и VO — обладают лишь основными свойствами. Соли этих оксидов и различных кислот имеют в растворах следующие характерные окраски: VO2 — голубую, V2O3 — зелёную и VO — фиолетовую. В кислой среде наиболее устойчивы производные четырёхвалентного ванадия, в щелочной — пятивалентного.
Обусловленное понижением валентности ванадия последовательное изменение окраски наглядно выявляется при действии цинка на солянокислый раствор ванадата аммония. Конечным продуктом восстановления в этом случае является V2+, тогда как Sn2+ восстанавливает V5+ лишь до V3+, а I- до V4+.
Пятивалентный ниобий восстанавливается цинком в кислой среде до Nb+3, тогда как Та+5 совсем не восстанавливается.
Отвечающий четырёхвалентному состоянию синий оксид (VO2) может быть получен осторожным восстановлением V2O5 (например прокаливанием с избытком щавелевой кислоты). Сине-чёрный NbO2 (т. пл. 2080 °С) образуется в результате восстановления Nb2O5 водородом при 1200 °С. Для получения коричнево-черного TaO2 требуется очень энергичное восстановление Ta2O5 (например, магнием при высоких температурах). При нагревании на воздухе диоксиды легко переходят в соответствующие ангидриды Э2О5.
Для ванадия довольно характерны продукты частичного восстановления ванадатов приблизительно состава MxV2O5 (где 0 < x < 1, а М — щелочной металл, NH4, Cu, Ag, Pb). Эти “ванадиевые бронзы” по некоторым свойствам похожи на аналогичные соединения вольфрама. Ещё более сходны с последними “ниобиевые бронзы” типа МхNbO3 (где М — Na, K, Sr, Ba). Есть указание на существование “танталовых бронз” типа ВахТаО3.
Гидроксид четырёхвалентного ванадия отвечает формуле VO(OH)2. Он имеет розовый цвет, амфотерен и труднорастворим в воде (ПР = 2·10-22). Образующиеся при взаимодействии VO2 (т. пл. 1545 °С) со щелочами жёлтые или коричневые соли носят название ванадатов и обычно производятся от изополикислоты состава H2V4O9 (т. е. Н2О·4VO2). Легкорастворимые ванадаты калия и натрия кристаллизуются по типу М4[V4O9]·7Н2О. Мета- и пированадаты натрия были получены сухим путём (длительным нагреванием в вакууме) по реакциям:
2 NaVO3 + 2 NaN3 = 3 N2 + 2 Na2VO3 и V2O5 + 2 NaN3 = 3 N2 + Na2V2O5.
Ванадаты двух- и трёхвалентных металлов в воде практически не растворимы. Получают их обычно совместным прокаливанием VO2 и оксидов соответствующих металлов в вакууме.
Соли, образуемые диоксидом ванадия с кислотами, производятся от катиона VO2+ (ванадила). Они вполне устойчивы в кислых средах (даже при нагревании). Из них VOCl2 может быть проще всего получен растворением V2O5 в крепкой соляной кислоте. В твёрдом состоянии хлористый ванадил имеет зелёную окраску. Он весьма гигроскопичен и легко растворяется в воде с синим или бурым (в зависимости от условий) окрашиванием раствора. С синим окрашиванием растворяется в воде также буро-чёрный VOBr2. Аналогичный иодид получен в виде коричневого кристаллогидрата 2VOI2·5H2O, легкорастворимого в воде. То же относится к синему кристаллогидрату VOSO4·3Н2О (тогда как безводный сульфат ванадила имеет зелёный цвет и в воде практически нерастворим). С сульфатами некоторых других металлов VOSO4 образует двойные соли, главным образом типов M2SO4·2VOSO4 и M2SO4·VOSO4. И те и другие обычно выделяются с кристаллизационной водой. Возможно, что в качестве соли ванадила [VO(VO3)2·2H2O] следует рассматривать и довольно характерный для ванадия чёрный промежуточный гидроксид V3O5(OH)4. Чёрный амид ванадила [VO(NH2)2] уже при слабом нагревании переходит в имид [VO(NH)] и затем в нитрид [(VO)3N2].
Четырёххлористый ванадий может быть получен взаимодействием элементов около 200 °С. Он представляет собой тяжёлую красно-бурую жидкость (т. пл. -20, т. кип. 153 °С). Плотность его пара отвечает формуле VСl4. Молекула эта имеет структуру тетраэдра с атомом ванадия в центре [d(VCl) = 214 пм]. Аналогична структура и устойчивой лишь ниже -45 °С молекулы VВr4 [d(VBr) = 230 пм]. Для растворов ванадийтетрахлорида в CСl4 установлено наличие равновесия между простыми и димерными молекулами (частично характеризуемого соотношением [VCl4]2/[V2Cl8] = 2·10-2 при -24 °С). При нагревании VСl4 медленно распадается на VСl3 и хлор, а при взаимодействии с водой гидролизуется по уравнению:
VСl4 + H2O = VOCl2 + 2 HСl.
Производным зелёного VOCl2 является комплексная соль состава Cs3VOCl5.
Пропускание паров VСl4 над нагретыми до 400 °С хлоридами K, Rb и Cs ведёт к образованию продуктов присоединения типа M2VCl6, окрашенных соответственно в коричневый, розово-красный и фиолетовый цвет. Действием хлора на смесь VСl4 и S2Cl2 могут быть получены кристаллы двойного соединения VCl4·SCl4 (т. пл. 32 °С). При взаимодействии VСl4 с жидким аммиаком осаждается зелёновато-коричневый хлорид VCl(NH2)3, а при взаимодействии с NO образуются легко возгоняющиеся твёрдые вещества состава VCl4NO, V2Cl7NO, V2Cl8(NO)5. Вместе с тем взаимодействием VСl4 с NO в бензоле был получен коричневый невозгоняющийся полимер [V(NO)3Cl2]n.
Длительным нагреванием VСl4 с безводной HF может быть получен коричневый порошок VF4. При нагревании его выше 100 °С происходит дисмутация на VF5 и VF3. Ванадийтетрафторид гигроскопичен, хорошо растворим в воде и легко гидролизуется с образованием синего (в безводном состоянии жёлтого) фтороксида VOF2. Последний с фторидами ряда металлов даёт синие двойные соединения, главным образом типа M2[VOF4·H2O]. Известны и безводные соли типа K2[VOF4] и (NH4)3[VOF5]. Сухим путём были получены также розовато-жёлтые соли типа M2VF6 (где M = K, Rb, Cs).
Фиолетово-чёрный четырёххлористый ниобий может быть получен по схеме:
4 NbCl5 + Nb = 5 NbCl4
при 400 °С он начинает возгоняться около 275 °С, а выше 300 °С (при отсутствии избытка NbCl5) происходит его дисмутация по схеме:
2 NbCl4 = NbCl5 + NbCl3.
В небольшом количестве воды или в разбавленных кислотах NbCl4 растворяется с синим окрашиванием жидкости. Такие растворы характеризуются очень сильными восстановительными свойствами. Аналогично хлориду могут быть получены сходные с ним по свойствам чёрный NbF4 и коричневый NbBr4. Длительным нагреванием NbI5 до 270 °С в вакууме был получен серый NbI4. При 503 °С он плавится и с отщеплением части иода переходит в Nb2I8. Известны также бромид и хлорид аналогичного состава. При сплавлении NbCl4 с хлоридами щелочных металлов образуются нестойкие соединения типа M2NbCl6. По ряду Cs®Na их термическая устойчивость уменьшается.
Зеленовато-чёрный TaCl4 может быть получен при 600 °С по схеме:
4 TaCl5 + Ta = 5 TaCl4
в отсутствие избытка TaCl5 выше 280 °С наступает дисмутация по схеме:
2 TaCl4 = ТаСl3 + ТаСl5
(тогда как при 210 °С идёт обратная реакция). Четырёххлористый тантал является ещё более сильным восстановителем, чем NbСl4. Так, при 320 °С протекает реакция по схеме:
ТаСl4 + NbСl5 = ТаСl5 + NbCl4.
С хлоридами Cs, Rb, K танталтетрахлорид способен образовывать лиловые комплексные соли типа M2ТаСl5. Получен и тёмно-серый ТаI4. Оксохлориды ТаOСl2 и NbOCl2 были синтезированы сухим путём (нагреванием смесей Э, Э2О5 и ЭСl5 в запаянных трубках). Известен и чёрный NbOI2.
Сульфиды ЭS2 ниобия и тантала могут быть получены прямым взаимодействием элементов или нагреванием металлов в токе сухого сероводорода. Лучше изученный TaS2 представляет собой чёрный порошок, весьма термически устойчивый (в отсутствие воздуха) и нерастворимый ни в соляной кислоте, ни в растворах едкого натра. Известны и кристаллические фазы составов NbSe2, NbTe2, NbSe3, TaSe2, TaTe2, TaS3, TaSe2, TaTe4. Тёмно-серый сульфид трёхвалентного ванадия является фазой переменного состава (с областью гомогенности на интервале от VS1,17 до VS1,53).
Чёрный оксид трёхвалентного ванадия (V2O3) может быть получен восстановлением V2O5 водородом при 700 °С. Он медленно взаимодействует с кислотами, образуя соли, которые являются очень сильными восстановителями. При действии на их растворы щелочей выпадает зелёный осадок V(OH)3, чрезвычайно легко окисляющийся на воздухе.
Растворением V2O3 (т. пл. 1970 °С) в плавиковой кислоте и упариванием раствора может быть получен тёмно-зелёный VF3·3H2O. С фторидами ряда одновалентных (и двухвалентных) металлов VF3 образует комплексные соединения типов M2VF5 (обычно выделяющиеся с кристаллизационной водой) и M3VF6. Примером может служить бледно-зелёный K3VF6 (т. пл. 1020 °С). Безводный VF3 удобно получать термическим разложением (NH4)3VF6. Он имеет зеленовато-жёлтую окраску, нерастворим в обычных растворителях и плавится лишь около 1400 °С. Известен и оксофторид VOF.
Ванадийтрихлорид может быть получен разложением VСl4 при нагревании. Он представляет собой фиолетовые нелетучие кристаллы, легко растворимые в воде с зелёным окрашиванием раствора. При концентрировании последнего (в отсутствие кислорода воздуха) выделяется зелёный гигроскопичный кристаллогидрат VCl3·6H2O. Аналогичные ванадийтрихлориду чёрные бромид и иодид в общем похожи на него по свойствам, но отличаются меньшей устойчивостью. Образование комплексов с галогенидами других металлов для рассматриваемых соединений не характерно, но некоторые производные этого типа известны. Примером могут служить красные соли M2VCl5·H2O (где M — K, Rb, Cs, NH4) и K3VCl6 (т. пл. 744 °С). Интересны изменения цвета K2VCl5·nH2O в зависимости от величины n: фиолетовой (0), красный (1), зелёный (4). При взаимодействии VСl3 с аммиаком образуется V(NH2)Cl2, который около 300 °С переходит в V(NH)Cl и затем в VN. В жидком аммиаке может быть получен красно-коричневый [V(NH3)6]Cl3.
Протекающей при 300 °С дисмутацией по схеме: