150953 (732863)

Файл №732863 150953 (Стекло: структура, свойства, применение)150953 (732863)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

СТЕКЛО: СТРУКТУРА, СВОЙСТВА, ПРИМЕНЕНИЕ



ВВЕДЕНИЕ

Стекло является самым широко применяемым материалом в быту, строительстве, на транспорте благодаря своим уникальным качествам: прозрачности, твердости, химической устойчивости к активным химическим реагентам, относительной дешевизне производства. Без него невозможно изготовить оптические приборы, телевизоры, космические корабли и др. Несмотря на успехи в создании новых материалов широкого назначения, неорганические стекла после камня, бетона, металла прочно занимают одно из главных мест среди используемых в практике.

Человеку с древнейших времен известны природные стекла (янтарь, стекла вулканического происхождения), а вырабатывать стекла он научился несколько тысяч лет назад. Производство стекла совершенствовалось на протяжении веков, но долгое время этот процесс определяло искусство мастеров, опыт которых передавался из поколения в поколение. В настоящее время наряду с ручным трудом в стеклоделии применяются механизированные методы формования стеклоизделий, которые обеспечивают массовый выпуск продукции. В народном хозяйстве ориентировочно можно выделить следующие основные области применения стекла: строительная промышленность, производство стеклотары, стеклоаппаратов, химической посуды; электровакуумная промышленность, использование стекла в качестве декоративного материала, оптическая промышленность и приборостроение.

Больше половины всего выплавляемого стекла перерабатывается на листы для остекления зданий. Широкое применение в строительстве нашли изделия из стекловолокнистых материалов (стеклянная вата, маты, жгуты и др.), которые используются в качестве тепло- и звукоизоляторов. Они не гниют и не плесневеют, обладают малым объемным весом, огнестойкостью и вибростойкостью [1].

Около трети всей стекольной продукции - сосуды самого разнообразного типа, фасона и назначения. Замечательные декоративные свойства стекла (способность воспринимать различные окраски, передавать игру света, разнообразие в переходах от кристальной прозрачности через все степени замутнения до полной непрозрачности) обусловили существование особой группы изделий, объединяемых общим названием "художественное стекло". Сюда относится художественная столовая посуда, монументальные стеклянные изделия (барельефы, торшеры, вазы, люстры и др.) и разнообразные отделочные материалы (плитки и листы для облицовки стен, полов зданий, карнизы, фризы и др., использование стекла в витражах). Одной из важных отраслей художественного стеклоделия является производство смальт (непрозрачных стекол) широкого ассортимента. Эти стекла используются при создании монументальных стенных панно в технике мозаичной живописи, родственной технике витража [2].

В виде стеклоэмалей, непрозрачных тонких стекловидных слоев различных цветов, стекло используется как защитное покрытие, предохраняющее металлические изделия от разрушения и придающее им внешний вид, удовлетворяющий эксплуатационным и эстетическим требованиям. Стеклоэмали применяются при изготовлении химической и пищевой аппаратуры, посуды, изделий санитарной техники, труб, вывесок, облицовочных плиток, ювелирных изделий [3] .

Оптическая промышленность и оптическое стекло позволили создать современные точнейшие оптические приборы во всем разнообразии их типов и назначений (обычные очки, микроскопы, телескопы, фото- и киноаппараты и др.).

Особо чистое кварцевое стекло используется для изготовления волоконных световодов при создании волоконно-оптических линий связи, позволяющих передавать большие объемы информации. Отдельный класс стекол образуют так называемые лазерные стекла. Это многокомпонентные стекла различной природы (силикатные, фосфатные, фторбериллатные, боратные, теллуритные и др.), активированные неодимом. Лазеры могут быть миниатюрными, как, например, используемые в медицине, и могут представлять собой мощные системы, применяемые в термоядерном синтезе. Лазеры применяются также в научных исследованиях, геодезии, при точной обработке металлов [4].

В ходе дальнейшего изложения будут дополнительно приведены еще некоторые примеры применения стекла как материала.

Из краткого обзора областей применения стекла очевидно, что необходимо изготавливать стекла, разные по свойствам: особо химически стойкие, особо прочные механически, обладающие определенными коэффициентами термического расширения, заданными оптическими и электрическими константами и др. Поэтому неудивительно, что исследователи прилагают много усилий для постижения природы стекла, выяснения влияния разнообразных факторов на его различные свойства.

В России становление науки о стекле и промышленного стеклоделия связано с именами выдающихся ученых М.В. Ломоносова и Д.И. Менделеева. М.В. Ломоносов первым в мировой практике стеклоделия обратил серьезное внимание на взаимосвязь свойств стекол и их химического состава. По его инициативе в 1754 году была отстроена первая стекольная фабрика. Заслугой Д.И. Менделеева являются предвидение полимерного строения SiO2 и развиваемые им представления о химической природе стекла, которое он рассматривал в общем контексте разработки таких фундаментальных понятий химической науки, как определенное-неопределенное соединение, раствор, сплав и т.д.

СТЕКЛООБРАЗНОЕ И КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЯ

Обычно понятие "стекло" определяется не просто как материал, а как некоторое особое состояние твердого тела, стеклообразное состояние, противопоставляемое кристаллическому. Известно, что одно и то же вещество может быть газообразным, жидким и кристаллическим. Для каждого такого состояния характерна своя группа специфических признаков. Стекло же не может быть полностью отнесено по совокупности признаков ни к одному из них. Рассмотрим вещества, находящиеся в указанных агрегатных состояниях, с точки зрения взаимного расположения частиц (атомов, ионов, молекул), образующих вещество, и их взаимодействия между собой. При очень высоких температурах многие неорганические вещества существуют в виде газа. В газе частицы вещества располагаются и движутся хаотически. При низком давлении, например атмосферном, взаимодействия между частицами чрезвычайно слабы. При понижении температуры газ конденсируется в жидкость, которая при дальнейшем снижении температуры кристаллизуется. В жидкостях и кристаллах частицы располагаются несравненно более компактно, между ними действуют значительные по величине силы, которые создают известную упорядоченность в расположении атомов или молекул: в кристаллах почти идеальную, в жидкостях - существенно менее полную. Основной особенностью кристаллов является то, что их можно получить путем повторения элементарной ячейки во всех трех направлениях. Элементарная ячейка состоит из некоторого числа атомов (ионов, молекул), строго определенным образом расположенных друг относительно друга. Такое повторение элементарной ячейки называют дальним порядком. В жидкостях нельзя выделить такой элементарной ячейки. Для жидкости можно с уверенностью говорить о существовании ближнего порядка, то есть о ближайших соседних частицах, окружающих центральную. Таким образом, для жидкости характерен ближний порядок, но нет дальнего. Мы воспользуемся здесь широко применяемым определением стекла: стекло - это такое состояние аморфного вещества, которое получается при затвердевании переохлажденной жидкости. Стекло неравновесно по отношению к кристаллическому состоянию, которое может реализовываться при том же составе и при тех же внешних условиях. Отличие стекла от кристаллов состоит в отсутствии периодичности строения, в отсутствии дальнего порядка в структуре.

Кроме традиционного пути получения стекол - охлаждения расплава, стали широко применяться и другие способы получения стекол. Сюда относятся стеклообразные пленки, получаемые напылением из газовой фазы; "метамиктные стекла", образующиеся под воздействием ударных давлений и при бомбардировке кристаллов нейтронами; стекла, получаемые по зольгель-технологии. В этой связи неудивительно, что разные исследователи дают различные определения стекла, отличные от приведенного нами. При этом они руководствуются выборочными признаками стеклообразного состояния. За основу принимаются, например, структурные признаки, способ получения стекла, тип химической связи и т.д. Терминологическая дискуссия по этому вопросу ведется уже давно, и она далека от завершения, что, безусловно, свидетельствует о сложности объекта исследования [4].

СТРУКТУРА СТЕКОЛ

Приведенное выше определение стекла, связанное с традиционным способом его производства и с общими сведениями о его структуре, привело к двум различным направлениям в развитии теории стеклообразного состояния. А.А. Лебедев предположил, что структуру стекла образуют субмикроскопические кристаллы - кристаллиты, расположенные друг относительно друг друга хаотическим образом [6]. Согласно кристаллитной гипотезе стекло является химически однородным.

Исследование стекол методом рентгеноструктурного анализа явилось качественным скачком в понимании природы стеклообразного состояния [6]. Согласно полученным данным было показано следующее: 1) кристаллиты содержат 1 - 2 элементарных ячейки, да и то искаженных, то есть терялся смысл самого понятия "кристаллит", 2) высказано предположение о химически неоднородном строении стекла. Исторически кристаллитная гипотеза сыграла большую роль в понимании природы стеклообразного состояния, но ее пригодность для описания большинства стеклообразных веществ оказалась невелика.

Наряду с кристаллитной гипотезой получили развитие представления шведского ученого В. Захариасена [6], который на основе успехов кристаллохимии силикатов высказал предположение, что структуру оксидных стекол образуют элемент-кислородные полиэдры, аналогичные таковым в кристаллах, но их сочленение не имеет строгого порядка и периодичности, как в кристаллах. Было установлено, что рентгенограммы кварцевого стекла лучше всего интерпретируются в рамках модели непрерывной беспорядочной сетки тетраэдров SiO4 . Атом кремния, окруженный четырьмя атомами кислорода, и отражает ближний порядок в структуре стекла. Для сравнения на рис. 1а, б схематично даны структура кристаллического кварца и структура стеклообразного кварца в виде беспорядочной сетки. Поскольку на рисунке представлена схема в двумерном изображении, каждый атом кремния окружен только тремя атомами кислорода. Понятно, что в реальном тетраэдре один атом кремния и три атома кислорода не могут находиться в одной плоскости. Поэтому схема дает несколько искаженную картину действительных представлений В. Захариасена. Тем не менее она правильно отражает основные идеи его подхода. Как показали многочисленные рентгеновские и нейтронографические (основанные на изучении рассеяния нейтронов стеклом) исследования, наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол, таких, как B2O3 , SiO2 , As2O3 , Si, B, и некоторых других. Исследования поведения стеклянных электродов в растворах электролитов также позволили высказать определенные суждения о ближнем порядке в стеклах. На базе экспериментального материала по изучению поведения электродов из разных стекол в растворах электролитов и его теоретического осмысления автором был предложен метод изучения элементов структуры стекла по типу комплексных ионов, таких, например, как [AlO4/2]1 - , [BO4/2]1 - [7].

Позже ионообменные процессы нашли широкое применение в градиентной оптике, в производстве стеклянных электродов и в производстве рН-метров, которые можно встретить на многих предприятиях и в лабораториях в качестве средства контроля и измерения кислотности среды и определения содержания в ней щелочных металлов.

Однако для стекол, содержащих два или более компонентов, характерна химическая неоднородность. Так, при введении в SiO2 оксида натрия в результате взаимодействия оксидов, несмотря на сохранение координации атомов кремния относительно кислорода, непрерывность кремнекислородной сетки нарушается за счет частичных обрывов связей Si-O-Si, соединяющих тетраэдры между собой. Появляются так называемые немостиковые атомы кислорода (рис. 1в). В бездефектном кварцевом стекле существуют только мостиковые атомы кислорода (рис. 1б). Для таких сложных стекол гипотеза неупорядоченной сетки Захариасена становится недостаточной, и для определения их общей структуры мало знать только ближний порядок; необходимо определить их строение на расстояниях, превышающих межатомные, так называемый средний порядок.

Результаты исследования стекол структурно-чувствительными методами (ЯМР - ядерный магнитный резонанс, ЭПР - электронный парамагнитный резонанс, инфракрасная и рамановская спектроскопии и др.) хорошо интерпретируются в предположении существования в стеклах структурных группировок, аналогичных, но несколько искаженных по отношению к имеющимся в соответствующих кристаллах [7]. Например, предполагается, что стеклообразный борный ангидрид в основном построен из бороксольных колец, образованных тремя борокислородными треугольниками BO3 . В щелочноборатных стеклах в зависимости от отношения M2O / B2O3 , кроме бороксольных колец, предполагается образование диборатных, триборатных, пентаборатных группировок, в которых атом бора может быть окружен как тремя, так и четырьмя атомами кислорода (рис. 2). Наличие таких группировок и относится к среднему порядку.

К сожалению, диапазон размеров указанных выше группировок составляет 10 - 12 ангстрем и является наиболее трудным для структурного анализа. Поэтому в настоящее время неясно, каков средний порядок и какова его роль в организации структуры стекла. При этом кристаллитная гипотеза и гипотеза непрерывной неупорядоченной сетки являются лишь отправными точками для поиска компромисса при описании структуры реальных стекол. В этой связи часто используются определенные модельные представления о структуре стекла. Рассмотрим одно из них, основанное на теории идеальных ассоциированных растворов, в соответствии с которой структура расплавов и стекол представляется состоящей из структурно-химических группировок, подобных, но несколько искаженных по отношению к имеющимся в соответствующих кристаллах. Это наряду с результатами исследований структурно-чувствительными методами позволило автору совместно с сотрудниками на основе исследования термодинамических свойств стекол и расплавов рассчитать количественные соотношения этих структурно-химических группировок [7].

Предельным случаем химически неоднородного стекла являются стекла ликвационной природы. При охлаждении ряда стеклообразующих расплавов образуются стекла, состоящие из стекол разного состава, отделенных друг от друга поверхностями раздела, как бы стекло в стекле. Одна составляющая структуры обогащена легко растворимыми компонентами стекла (щелочные оксиды, оксид бора) и является химически нестойкой, а другая - нерастворимыми (оксиды кремния и алюминия) и является химически стойкой.

Окончательное доказательство существования таких стекол было получено в результате исследования рассеяния ими рентгеновских лучей под малыми углами [6]. Варьирование химического состава стекол, режимов отжига и последующей обработки разными растворителями позволило получать пористые стекла с размером пор от нескольких десятков до 1000 ангстрем. Пористые стекла широко применяются как адсорбенты и как "молекулярные сита", которые пропускают мелкие молекулы и не пропускают более крупные. Молекулярные сита были использованы, например, при получении противогриппозных вакцин. При введении в поры каких-либо неорганических соединений и последующей термообработке при 1000 - 1200?С получаются разнообразнейшие материалы, называемые импрегнированными кварцоидами. Они представляют собой массивное, во многих случаях совершенно прозрачное стекло, в котором уже нет пор. Это стекло обладает особыми свойствами, определяемыми составом введенных в поры веществ. Возможности применения пористых стекол так разнообразны, что для их подробного изложения потребовалась бы отдельная публикация.

Характеристики

Тип файла
Документ
Размер
120,76 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6692
Авторов
на СтудИзбе
289
Средний доход
с одного платного файла
Обучение Подробнее