23 (732239), страница 3

Файл №732239 23 (Термодинамика) 3 страница23 (732239) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Таким образом эволюцию к более высокому порядку можно представить как процесс , в котором система достигает состояния с более низкой энтропией по сравнению с начальной .

Фундаментальная теорема о производстве энтропии в открытой системе с независимыми от времени краевыми условиями была сформулирована Пригожиным: в линейной области система эволюционирует к стационарному состоянию , характеризуемому минимальным производством энтропии , совместимым с наложенными граничными условиями .

Итак состояние всякой линейной открытой системы с независящими от времени краевыми условиями всегда изменяется в направлении уменьшения производства энтропии P = d S / d t пока не будет достигнуто состояние текущего равновесия , при котором производство энтропии минимально :

d P < 0 (условие эволюции)

P = min , d P = 0 (условие текущего равновесия)

d P/ d t < 0 (2.2)

  1. ДИССИПАТИВНЫЕ СТРУКТУРЫ.

Каждая система состоит из элементов (подсистем) . Эти элементы находятся в определенном порядке и связаны определенными отношениями. Структуру системы можно назвать организацию элементов и характер связи между ними.

В реальных физических системах имеются пространственные и временные структуры .

Формирование структуры - это возникновение новых свойств и отношений в множестве элементов системы . В процессах формирования структур играют важную роль понятия и принципы :

  1. Постоянный отрицательный поток энтропии .

  2. Состояние системы в дали от равновесия .

  3. Нелинейность уравнений описывающих процессы .

  4. Коллективное (кооперативное) поведение подсистем .

  5. Универсальный критерий эволюции Пригожина - Гленсдорфа.

Формирование структур при необратимых процессах должно сопровождаться качественным скачком (фазовым переходом) при достижении в системе критических значений параметров. В открытых системах внешний вклад в энтропию (2.1) d S в принципе можно выбрать произвольно , изменяя соответствующим образом параметры системы и свойства окружающей среды . В частности энтропия может уменьшаться за счет отдачи энтропии во внешнюю среду , т.е. когда d S < 0 . Это может происходить , если изъятие из системы в единицу времени превышает производство энтропии внутри системы , то есть

d S dSe dSi

¾ < 0 , если ¾ > ¾ > 0 (2.3)

d t dt dt

Чтобы начать формирование структуры , отдача энтропии должна превысить некоторое критическое значение . В сильно неравновесном расстоянии переменные системы удовлетворяют нелинейным уравнениям .

Таким образом , можно выделить два основных класса необратимых процессов :

  1. Уничтожение структуры вблизи положения равновесия . Это универсальное свойство систем при произвольных условиях .

  2. Рождение структуры вдали от равновесия в открытой системе при особых критических внешних условиях и при нелинейной внутренней динамики . Это свойство не универсально .

Пространственные , временные или пространственно-временные структуры , которые могут возникать вдали от равновесия в нелинейной области при критических значениях параметров системы называются диссипативными структурами.

В этих структурах взаимосвязаны три аспекта :

  1. Функция состояния , выражаемая уравнениями .

  2. Пространственно - временная структура , возникающая из-за неустойчивости .

  3. Флуктуации , ответственные за неустойчивости .

Рис. 1. Три аспекта диссипативных структур.

Взаимодействия между этими аспектами приводит к неожиданным явлениям - к возникновению порядка через флуктуации , формированию высокоорганизованной структуры из хаоса.

Таким образом , в диссипативных структурах происходит становление из бытия , формируется возникающее из существующего.

  1. САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СТСТЕМ И

СЕНЕРГЕТИКА.

Переход от хаоса к порядку , происходящий при изменении значений параметров от до критических к сверхкритическим , изменяет симметрию системы . По этому такой переход аналогичен термодинамическим фазовым переходам . Переходы в неравновесных процессах называются кинетическими фазовыми переходами . В близи неравновесных фазовых переходов не существует непротиворечивого макроскопического описания . Флуктуации столь же важны , как и среднее значении . Например , макроскопические флуктуации могут приводить к новым типам не устойчивостей .

Итак , в дали от равновесия между химической , кинетической и пространственно-временной структурой реагирующих систем существует неожиданная связь . Правда , взаимодействие , определяющие взаимодействие констант скоростей и коэффициентов переноса , обусловлены короткодействующими силами ( силами валентности , водородными связями и силами Ван-Дер-Вальса) . Однако решения соответствующих уравнений зависят , кроме того , от глобальных характеристик . Для возникновения диссипативных структур обычно требуется , чтобы размеры системы превышали некоторое критическое значение - сложную функцию параметров , описывающих реакционно-диффузионные процессы . Мы можем по этому утверждать , что химические неустойчивости задают дальнейший порядок , посредством которого система действует как целое .

Если учесть диффузию , то математическая формулировка проблем , связанных с диссипативными структурами , потребует изучении дифференциальных уравнений в частных производных . Действительно , эволюция концентрации компонент Х со временем определяется уравнением вида

(2.4)

где первый член дает вклад химических реакций в изменении концентрации Хi и обычно имеет простой полиноминальный вид , а второй член означает диффузию вдоль оси r.

По истине поразительно , как много разнообразных явлений описывает реакционно-диффузное уравнение (2.4 ) , по этому интересно рассмотреть ² основное решение ² , которое бы соответствовала термодинамической ветви . Другие решения можно было бы получать при последовательных не устойчивостях , возникающих по мере удаления от состояния равновесия . Неустойчивости такого типа удобно изучать методами теории бифуркации [ Николис и Пригожин , 1977] . В принципе , бифуркация есть нечто иное , как возникновение при некотором критическом значении параметра нового решения уравнений . Предположим , что мы имеем химическую реакцию , соответствующую кинетическому уравнению [ Маклейн и Уолис , 1974] .

d X

¾ = a X (X-R) (2.5)

d t

Ясно что при R < 0 существует только одно решение , независящее от времени , X = 0 . В точке R = 0 происходит бифуркация , и появляется новое решение X = R .

Рис. 2.3. Бифуркационная диограмма для уравнения ( 2.5.) .

Сплошная линия соответствует устойчивой ветви ,

точки - неустойчивой ветви .

Анализ устойчивости в линейном приближении позволяет проверить , что решение X = 0 при переходе через R = 0 становится неустойчивым , а решение X = R - устойчивым . В общем случаи при возрастании некоторого характеристического параметра р происходят последовательные бифуркации . На рисунке 2.4. показано единственное решение при р = р1 , но при

р = р2 единственность уступает место множественным решения .

Интересно отметить , что бифуркация в некотором смысле вводит в физику и в химию , историю - элемент , который прежде считался прерогативой наук занимающихся изучением биологическим , общественных и культурных явлений .

Рис. 2.4. Последовательные бифуркации :

А и А1 - точки первичных бифуркаций из

термодинамической ветви ,

В и В1 - точки вторичной бифуркации .

Известно , что при изменении управляющих параметров в системе наблюдаются разнообразные переходные явления . Выделим теперь из этих наблюдений определенные общие черты , характерные для большого числа других переходов в физико химических системах .

С этой целью представим графически (рис. 2.5) зависимость вертикальной компоненты скорости течения жидкости в некоторой определенной точке от внешнего ограничения , или , в более общем виде , зависимость переменной состояние системы Х (или х = Х - Хs ) от управляющего параметра l . Таким образом мы получим график , известный под названием бифуркационной диаграммы .

Рис. 2.5. Бифуркационная диаграмма :

а - устойчивая часть термодинамической ветви ,

а1 - не устойчивая часть термодинамической ветви ,

в12 - диссипативные структуры , рожденные в

сверхкритической области .

При малых значения l возможно лишь одно решение , соответствующее состоянию покоя в бенаровском эксперименте .Оно представляет собой непосредственную экстрополяцию термодинамического равновесия , и подобно равновесно , характеризующейся важным свойством - асимптотической устойчивостью , поскольку в этой области система способна гасить внутренние флуктуации или внешнее возмущения . По этой причине такую ветвь состояний мы будем называть термодинамической ветвью . При переходе критического значения параметра l , обозначенного lc на рисунке 2.5. , состоящие на этой ветви становится неустойчивыми , так как флуктуации или малые внешние возмущение уже не гасятся . Действуя подобно усилителю , система отклоняется от стационарного состояния и переходит к новому режиму , в случае бенаровского эксперимента соответствующему состоянию стационарной конвекции . Оба этих режима сливаются при l = lc и различаются при l > lc . Это явление называется бифуркацией . Легко понять причины , по которым это явление следует ассоциировать с катастрофическими изменениями и конфликтами. В самом деле , в решающий момент перехода система должна совершить критический выбор ( в окрестности l = lc ) , что в задаче Бенара связано с возникновением право- или левовращательных ячеек в определенной области пространства ( рис. 2.5. , ветви в1 или в2 ) .

В близи равновесного состояния стационарное состояние асимптотических устойчивы (по теореме о минимальном производстве энтропии ) , по этому в силу непрерывности эта термодинамическая ветвь простирается во всей докритической области . При достижении критического значения термодинамическая ветвь может стать неустойчивой , так что любое , даже малое возмущение , переводит систему с термодинамической ветви в новое устойчивое состояние , которое может быть упорядоченным . Итак , при критическом значении параметром произошла бифуркация и возникла новая ветвь решений и , соответственно , новое состояние . В критической области , таким образом , событие развивается по такой схеме :

Флуктуация ® Бифуркация ®

неравновесный фазовый переход ®

Рождение упорядоченной структуры .

Бифуркация в широком понимании - приобретении нового качества движениями динамической системы при малом изменении ее параметров ( возникновение при некотором критическом значении параметра нового решения уравнений ) . Отметим , что при бифуркации выбор следующего состояния носит сугубо случайный характер , так что переход от одного необходимого устойчивого состояния к другому необходимому устойчивому состоянию проходит через случайное (диалектика необходимого и случайного) . Любое описание системы , претерпевающей бифуркацию , включает как детерминистический , так и вероятностный элементы , от бифуркации до бифуркации поведении системы детерминировано , а в окрестности точек бифуркации выбор последующего пути случаен . Проводя аналогию с биологической эволюцией можно сказать , что мутации - это флуктуации , а поиск новой устойчивости играет роль естественного отбора . Бифуркация в некотором смысле вводит в физику и химию элемент историзма - анализ состояния в1 , например , подразумевает знание истории системы , прошедшей бифуркацию .

Общая теория процессов самоорганизации открытых сильно не равновесных системах развивается на основе универсального критерия эволюции Пригожина - Гленсдорфа . Этот критерий является обобщением теоремы Пригожина о минимальном производстве энтропии . Скорость производства энтропии , обусловленная изменением термодинамических сил Х , согласно этому критерию подчиняется условию

dx P / t £ 0 (2.6)

Это неравенство не зависит не от каких предположений о характере связей между потоками и силами в условиях локального равновесия и носит по этому универсальный характер . В линейной области неравенство (2.6. ) переходит в теорему Пригожина о минимальном производстве энтропии . Итак , в неравновестной системе процессы идут так , т.е. система эволюционирует таким образом, что скорость производства энтропии при изменении термодинамических сил уменьшается ( или равна нулю в стационарном состоянии ).

Упорядоченные структуры , которые рождаются вдали от равновесия , в соответствии с критерием (2.6.) и есть диссипативные структуры .

Эволюция бифуркации и последующей самоорганизации обусловлено , таким образом , соответствующими не равновесными ограничениями .

Характеристики

Тип файла
Документ
Размер
1,79 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее