23 (732239), страница 2
Текст из файла (страница 2)
Температура является интенсивным параметром и служит мерой интенсивности теплового движения молекул.
Изложенное положение о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики.
Иначе говоря , состояние термодинамического равновесия определяется совокупностью внешних параметров и температуры.
Р.Фаулер и Э.Гуггенгейм назвали его нулевым началом , так как оно подобно первому и второму началу определяющим существование некоторых функций состояния , устанавливает существование температуры у равновесных систем. Об этом упоминалось выше.
Итак , все внутренние параметры равновесной системы являются функциями внешних параметров и температур .(Второй постулат термодинамики).
Выражая температуру через внешние параметры и энергию , второй постулат можно сформулировать в таком виде : при термодинамическом равновесии все внутренние параметры являются функциями внешних параметров и энергии.
Второй постулат позволяет определить изменение температуры тела по изменению какого либо его параметра , на чем основано устройство различных термометров.
-
ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ.
Процесс перехода системы из состояния 1 в 2 называется обратимым , если возвращением этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений окружающих внешних телах.
Процесс же перехода системы из состояния 1 в 2 называется необратимым , если обратный переход системы из 2 в 1 нельзя осуществить без изменения в окружающих телах .
Мерой необратимости процесса в замкнутой системе является изменением новой функции состояния - энтропии , существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода . Однозначность этой функции состояния приводит к тому , что всякий необратимый процесс является неравновесным.
Из второго начала следует , что S является однозначной функцией состояния. Это означает , что dQ/T для любого кругового равновесного процесса равен нулю. Если бы это не выполнялось , т.е. если бы энтропия была неоднозначной функцией состояния то , можно было бы осуществить вечный двигатель второго рода.
Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S , которая при адиабатных равновесных процессах не изменяется и состовляет содержание второго начала термодинамики для равновесных процессов.
Математически второе начало термодинамики для равновесных процессов записывается уравнением:
dQ/T = dS или dQ = TdS (1.3)
Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса :
dQ/T = 0 (1.4)
Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид :
dQ/T < 0 (1.5)
Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением :
TdS = dU + pdV (1.6)
Обсудим вопрос о физическом смысле энтропии.
1.4.2. ЭНТРОПИЯ.
Второй закон термодинамики постулирует существование функции состояния , называемой «энтропией» ( что означает от греческого «эволюция» ) и обладающей следующими свойствами :
а) Энтропия системы является экстенсивным свойством . Если система состоит из нескольких частей , то полная энтропия системы равна сумме энтропии каждой части .
в) Изменение энтропии d S состоит из двух частей . Обозначим через dе S поток энтропии, обусловленный взаимодействием с окружающей средой , а через di S - часть энтропии , обусловленную изменениями внутри системы , имеем
d S = de S + di S (1.7)
Приращение энтропии di S обусловленное изменением внутри системы , никогда не имеет отрицательное значение . Величина di S = 0 , только тогда , когда система претерпевает обратимые изменения , но она всегда положительна , если в системе идут такие же необратимые процессы.
Таким образом
di S = 0 (1.8)
( обратимые процессы );
di S > 0 (1.9)
( необратимые процессы );
Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду :
d S = di S > 0 (1.10)
( изолированная система ).
Для изолированной системы это соотношение равноценно классической формулировке , что энтропия никогда не может уменьшаться , так что в этом случае свойства энтропийной функции дают критерий , позволяющий обнаружить наличие необратимых процессов . Подобные критерии существуют и для некоторых других частных случаев .
Предположим , что система , которую мы будем обозначать символом 1 , находится внутри системы 2 большего размера и что общая система , состоящая системы 1 и 2 , является изолированной.
Классическая формулировка второго закона термодинамики тогда имеет вид :
d S = d S1 + d S2 ³ 0 (1.11)
Прилагая уравнения (1.8) и (1.9) в отдельности каждой части этого выражения , постулирует , что di S1 ³ 0 , di S2 ³ 0
Ситуация при которой di S1 > 0 и di S2 < 0 , а d( S1 + S2 )>0 , физически неосуществима . Поэтому можно утверждать , что уменьшение энтропии в отдельной части системы , компенсируемое достаточным возрастанием энтропии в другой части системы , является запрещенным процессом . Из такой формулировки вытекает , что в любом макроскопическом участке системы приращение энтропии , обусловленное течением необратимых процессов , является положительным. Под понятием « макроскопический участок » системы подразумевается любой участок системы , в котором содержится достаточное большое число молекул , чтобы можно было принебреч микроскопическими флуктуакциями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы .
Такую формулировку второго закона можно было бы назвать « локальной » формулировка в противоположность « глобальной » формулировка классической термодинамики . Значение подобной новой формулировке состоит в том ,что на ее основе возможен гораздо более глубокий анализ необратимых процессов .
-
ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ.
Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом . Эта величина определяется работой W химических сил при реакции . Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции . Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел . Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре .
В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает зависить от каких-либо термодинамических параметров состояния и в пределе ( Т= 0 К) принимает одну и туже для всех систем универсальную постоянную величину , которую можно принять равной нулю .
Общность этого утверждения состоит в том , что , во-первых , оно относится к любой равновесной системе и , во-вторых , что при Т стремящемуся к 0 К энтропия не зависит от значения любого параметра системы. Таким образом по третьему началу,
lin [ S (T,X2) - S (T,X1) ] = 0 (1.12)
или
lim [ dS/dX ]T = 0 при Т ® 0 (1.13)
где Х - любой термодинамический параметр (аi или Аi).
Предельно значение энтропии , поскольку оно одно и тоже для всех систем , не имеет никакого физического смысла и поэтому полагается равным нулю (постулат Планка). Как показывает статическое рассмотрение этого вопроса , энтропия по своему существу определена с точностью до некоторой постоянной (подобно, например, электростатическому потенциалу системы зарядов в какой либо точке поля). Таким образом , нет смысла вводить некую «абсолютную энтропию», как это делал Планк и некоторые другие ученые.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
Около 50 лет назад в результате развития термодинамики возникла новая дисциплина - синергетика. Являясь наукой о самоорганизации самых различных систем - физических , химических , биологических и социальных - синергетика показывает возможность хотя бы частичного снятия междисциплинных барьеров не только внутри естественно научной отросли знания , но так же и между естественно научной и гумонитарной культурами .
Синергетика занимается изучением систем , состоящих из многих подсистем самой различной природы , таких , как электроны , атомы , молекулы , клетки , нейтроны , механические элементы , фотоны , органы , животные и даже люди.
При выборе математического аппарата необходимо иметь ввиду , что он должен быть применим к проблемам , с которыми сталкиваются физик , химик , биолог , электротехник и инженер механик. Не менее безотказно он должен действовать и в области экономики , экологии и социологии .
Во всех этих случаях нам придется рассматривать системы , состоящие из очень большого числа подсистем , относительно которых мы можем не располагать всей полной информацией . Для описания таких систем не редко используют подходы , основанные на термодинамики и теории информации.
Во всех системах , представляющих интерес для синергетики , решающую роль играет динамика. Как и какие макроскопические состояния образуются, определяются скоростью роста (или распада) коллективных «мод» . Можно сказать что в определенном смысле мы приходим к своего рода обобщенному дарвенизму , действие которого распознается не только на органический ,но и на неорганический мир : возникновение макроскопических структур обусловленных рождением коллективных мод под воздействием флуктуаций , их конкуренцией и , наконец, отбором «наиболее приспособленной» моды или комбинации таких мод.
Ясно, что решающую роль играет параметр «время» . Следовательно , мы должны исследовать эволюцию систем во времени . Именно поэтому интересующие нас уравнения иногда называют «эволюционными».
-
ОБЩАЯ ХАРАКТЕРИСТИКА ОТКРЫТЫХ СИСТЕМ.
Открытые системы - это термодинамические системы , которые обмениваются с окружающими телами ( средой ) , веществом , энергией и импульсом . Если отклонение открытой системы от состояния равновесия невелико , то неравновесное состояние можно описать теми же параметрами (температура , химический потенциал и другие) , что и равновесное . Однако отклонение параметров от равновесных значений вызывают потоки вещества и энергии в системе . Такие процессы переноса приводят к производству энтропии . Примерами открытых систем являются : биологические системы , включая клетку , системы обработки информации в кибернетике , системы энергоснабжения и другие . Для поддержания жизни в системах от клетки до человека необходим постоянный обмен энергией и веществом с окружающей средой . Следовательно живые организмы являются системами открытыми , аналогично и с другими приведенными параметрами. Пригожиным в 1945 году был сформулирован расширенный вариант термодинамики.
В открытой системе изменение энтропии можно разбить на сумму двух вкладов :
d S = d Se + d Si (2.1)
Здесь d Se - поток энтропии , обусловленный обменом энергией и веществом с окружающей средой , d Si - производство энтропии внутри системы (рис. 2.1).
Рис. 2.1. Схематическое представление открытых
систем : производство и поток энтропии.
Х - набор характеристик :
С - состав системы и внешней среды ;
Р - давление ; Т - температура.
Итак , открытая система отличается от изолированной наличием члена в выражении для изменения энтропии , соответствующего обмену . При этом знак члена d Se может быть любым в отличии от d Si .
Для неравновесного состояния :
S < Smax
Неравновесное состояние более высокоорганизованно , чем равновесное , для которого
S = Smax