23 (732239), страница 4

Файл №732239 23 (Термодинамика) 4 страница23 (732239) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Эволюция переменных Х будет описываться системой уравнений

(2.7)

где функции F как угодно сложным образом могут зависить от самих переменных Х и их пространственных производных координат r и времени t . Кроме того , эти функции буду зависить от управляющих параметров , т.е. тех изменяющихся характеристик , которые могут сильно изменить систему . На первый взгляд кажется очевидным , что структура функции { F } будет сильно определятся типом соответствующей рассматриваемой системы . Однако , можно выделить некоторые основные универсальные черты , независящие от типа систем.

Решение уравнения (2.7) , если нет внешних ограничений , должны соответствовать равновесию при любом виде функции F . Поскольку равновесное состояние стационарно , то

Fi ({Xрав},lрав ) = 0 (2.8)

В более общем случае для неравновесного состояния можно аналогично написать условие

Fi ({X},l) = 0 (2.9)

Эти условия налагают определенные ограничения универсального характера , например, законы эволюции системы должны быть такими , чтобы выполнялось требование положительности температуры или химической концентрации, получаемых как решения соответствующих уравнений.

Другой универсальной чертой является нелинейным . Пусть , например некоторая единственная характеристика системы

удовлетворяет уравнению

(2.10)

где k - некоторый параметр , l - внешние управляющие ограничения . Тогда стационарное состояние определяется из следующего алгебраического уравнения

l - kX = 0 (2.11)

откуда

Xs = l / k (2.12)

В стационарном состоянии , таким образом , значении характеристики , например , концентрации , линейно изменяется в зависимости от значений управляющего ограничения l , и имеется для каждого l единственное состояние Хs . Совершенно однозначно можно предсказать стационарное значение Х при любом l ,если иметь хотя бы два экспериментальных значения Х

(l ) .Управляющий параметр может , в частности , соответствовать степени удаленности системы от равновесия . Поведение в этом случае системы очень похожи на равновесии даже при наличии сильно неравновесных ограничений .

Рис. 2.6. Иллюстрация универсальной черты нелинейности в самоорганизации структур .

Если же стационарное значение характеристики Х не линейно зависит от управляющего ограничения при некоторых значениях , то при одном и том же значении имеется несколько различных решений . Например , при ограничениях система имеет три стационарных решения , рисунок 2.6.в. Такое универсальное отличие от линейного поведения наступает при достижении управляющим параметром некоторого критического значения l - проявляется бифуркация. При этом в нелинейной области небольшое увеличение может привести к неодекватно сильному эффекту - система может совершить скачок на устойчивую ветвь при небольшом изменении вблизи критического значения l , рисунок 2.6.в. Кроме того из состояний на ветви А1В могут происходить переходы АВ1 ( или наоборот ) даже раньше , чем будут достигнуты состояния В или А , если возмущения накладываемые на стационарное состояние , больше значение , соответствующего промежуточной ветви А В . Возмущениями могут служить либо внешнее воздействие либо внутренние флуктуации в самой системе . Таким образом , системе с множественными стационарными состояниями присуще универсально свойствам внутренне возбудимость и изменчивости скачкам .

Выполнение теоремы по минимально производстве энтропии в линейной области , а, как обобщение этой теоремы , выполнение универсального критерия (2.6.) и в линейной , и в нелинейной области гарантируют устойчивость стационарных неравновесных состояний. В области линейности необратимых процессов производство энтропии играет такую же роль , как термодинамические потенциалы в равновесной термодинамике . В нелинейной области величина dP / dt не имеет какого либо общего свойства , однако , величина dx P/dt удовлетворяет неравенству общего характера (2.6. ) , которая является обобщением теоремы о минимальном производстве энтропии .

2.3 ПРИМЕРЫ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ

СИСТЕМ.

Рассмотрим в качестве иллюстрации некоторые примеры самоорганизации систем в физике , химии , биологии и социуме.

  1. ФИЗИЧЕСКИЕ СИСТЕМЫ.

В принципе даже в термодинамическом равновесии можно указать примеры самоорганизации , как результаты коллективного поведения . Это , например , все фазовые переходы в физических системах , такие как переход жидкость - газ , ферромагнитный переход или возникновение сверхпроводимости . В неравновесном состоянии можно назвать примеры высокой организации в гидродинамике , в лазерах различных типов , в физике твердого тела - осциллятор Ганна , туннельные диоды , рост кристаллов .

В открытых системах , меняя поток вещества и энергии из вне , можно контролировать процессы и направлять эволюцию систем к состояниям , все более далеким от равновесия . В ходе неравновесных процессов при некотором критическом значении внешнего потока из неупорядоченных и хаотических состояний за счет потери их устойчивости могут возникать упорядоченные состояния , создаваться диссипативные структуры .

2.3.1а. ЯЧЕЙКИ БЕНАРА.

Классическим примером возникновения структуры из полностью хаотической фазы являются конвективные ячейки Бенара . В 1900 году была опубликована статья Х.Бенара с фотографией структуры , по виду напоминавшей пчелиные соты (рис. 2.7).

Рис. 2.7. Ячейки Бенара :

а) - общий вид структуры

б) - отдельная ячейка.

Эта структура образовалась в ртути , налитой в плоский широкий сосуд , подогреваемый снизу , после того как температурный градиент превысил некоторое критическое значение . Весь слой ртути (или другой вязкой жидкости) распадался на одинаковые вертикальные шестигранные призмы с определенным соотношением между стороной и высотой (ячейки Бенара). В центральной области призмы жидкость поднимается , а вблизи вертикальных граней - опускается . Возникает разность температур Т между нижней и верхней поверхностью DТ = Т2 - Т1 > 0 .Для малых до критических разностей DТ < DТkp жидкость остается в покое , тепло снизу вверх передается путем теплопроводности . При достижении температуры подогрева критического значения Т2 = Тkp (соответственно DТ = DТkp ) начинается конвекция . При достижении критического значения параметра Т , рождается , таким образом , пространственная диссипативная структура . При равновесии температуры равны Т21 , DТ = 0 . При кратковременном подогреве (подводе тепла) нижней плоскости , то есть при кратковременном внешнем возмущении температура быстро станет однородной и равной ее первоначальному значению . Возмущение затухает , а состояние - асимптотически устойчиво. При длительном , но до критическом подогреве ( DТ < DТkp ) в системе снова установится простое и единственное состояние , в котором происходит перенос к верхней поверхности и передачи его во внешнюю среду (теплопроводность) , рис. 2.8 , участок а . Отличие этого состояния от равновесного состояния состоит в том , что температура , плотность , давление станут неоднородными . Они будут приблизительно линейно изменяться от теплой области к холодной .

Рис. 2.8. Поток тепла в тонком слое жидкости.

Увеличение разности температур DТ , то есть дальнейшее отклонение системы от равновесия , приводит к тому , что состояние неподвижной теплопроводящей жидкости становится неустойчивым участок б на рисунке 2.8. Это состояние сменяется устойчивым состоянием (участок в на рис. 2.8) , характеризующимся образованием ячеек . При больших разностях температур покоящаяся жидкость не обеспечивает большой перенос тепла , жидкость ²вынуждена² двигаться , причем кооперативным коллективным согласованном образом.

Далее этот вопрос рассматривается в 3 главе.

2.3.1в. ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ

СИСТЕМА.

Итак , в качестве примера физической системы , упорядоченность которой есть следствие внешнего воздействия , рассмотрим лазер.

При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла.

При малой мощности накачки эти электромагнитные волны , которые испускает лазер , некоррелированные , и излучение подобно излучению обычной лампы. Такое некогерентное излучение - это шум , хаос. При повышении внешнего воздействия в виде накачки до порогового критического значения некогерентный шум преобразуется в ²чистый тон² , то есть испускает число синусоидальная волна - отдельные атомы ведут себя строго коррелированным образом , самоорганизуются.

Лампа ® Лазер

Хаос ® Порядок

Шум ® Когерентное излучение

В сверхкритической области режим ²обычной лампы² оказывается не стабильным , а лазерный режим стабильным , рисунок 2.9.

Рис. 2.9. Излучение лазера в до критической (а) и

сверхкритической (б) области.

Видно , что образование структуры в жидкости и в лазере формально описывается весьма сходным образом . Аналогия связана с наличием тех же самых типов бифуркаций в соответствующих динамических уровнях.

Подробнее этот вопрос рассмотрим в практической части , в 3 главе.

  1. ХИМИЧЕСКИЕ СИСТЕМЫ .

В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского .

2.3.2а. РЕАКЦИЯ БЕЛАУСОВА - ЖАБОТИНСКОГО.

Рассмотрим реакцию Белоусова -Жаботинского . В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 , CH2(COOH)2, H2SO4 , добавляют несколько капель индикатора окисления - восстановления - ферроина и перемешивают . Более конкретно - исследуются окислительно - восстановительные реакции

Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+

в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления .

При составе

сульфат церия - 0,12 ммоль/л

бромида калия - 0,60 ммоль/л

малоковой кислоты - 48 ммоль/л

3-нормальная серная кислота ,

немного ферроина

При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а .

Рис. 2.10. Временные (а) и пространственные (б)

периодические структуры в реакции

Белоусова - Жаботинского.

...Такая система и эффект получили название химические часы . Если на реакцию Белоусова - Жаботинского накладывать возмущение - концентрационный или температурный импульс , то есть вводя несколько миллимолей бромата калия или прикасаясь к колбе в течении нескольких секунд , то после некоторого переходного режима будут снова совершаться колебания с такой же амплитудой и периодом , что и до возмущения . Диссипативная

Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами . При составе

Характеристики

Тип файла
Документ
Размер
1,79 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее