FUUSIK~1 (731720), страница 10
Текст из файла (страница 10)
Rõhu seos molekulide kineetilise energiaga. Gaasi rõhk nõu seinale tekib sellest, et molekulid põrkudes avaldavad seinale jõudu. Jõud mõjub tegelikult iga üksikpõrke ajal, aga suure hulga molekulide puhul hetkelised jõud keskmistuvad.
Olgu meil n molekuli kuubis küljega l. Kuigi nad liiguvad igasugustes suundades, vaatleme x, y ja z-suunalisi liikumise komponente eraldi. Iga molekuli põrkumisel risti seinaga (molekul ei põrku risti seinaga, vaid ainult vastavasuunaline komponent) tema liikumise hulk (impulss) muutub suuruselt mv suurusele –mv, seega 2mv võrra.
Kahe järjestikuse põrke vahelise aja leiame, arvutades selle kui aja, mille jooksul molekul liikus teise seinani ja sealt uuesti tagasi.
Kuigi molekul liikudes põrkub paljude teistega, võib impulsi jäävuse seaduse alusel ette kujutada, nagu liikumise x, y ja z-suunalised komponendid kanduksid üheklt molekulilt teisele üle ja kuigi lõpuks ei saabu seina juurde tagasi enam seesama molekul, on kulunud aeg siiski seesama, mis oleks olnud ühe molekuli likumisel ilma põrgeteta. Nüüd teeme olulise füüsikalise eelduse: teame küll, et molekuli põrge seinaga toimub momentselt, meie aga kujutleme, et põrkeprotsess keskmistus üle kahe põrke vahelise aja. Rakendame selle aja kohta eespool tuletatud seost impulsi muutuse ja jõu mõjumise aja vahel:
ehk asendades
kust
Kuna me keskmistasime põrkeprotsessi üle kahe põrke vaheaja, siis niisugune oleks keskmine jõud üle kahe põrke vaheaja, seega pidevalt mõjuv jõud, mis mudaks molekuli liikumise vastassuunaliseks. Newtoni kolmanda seaduse kohaselt mõjub samasuur jõud ka seinale. Meie kuubis küljega l oli n molekuli. Kuigi nad liiguvad kõikides suundades ja ainult liikumise komponendid on kuubi seintega risti, võib siiski kujutleda, et pilt oleks sama kui molekulidest n/3 liiguks iga seina suunas risti. Seega oleks kõigi molekulide poolt kuubi küljele avalduv jõud
Rõhu arvutamiseks tuleb jõud jagada külje pindalaga:
Paneme tähele, et n/l3=n0, mis on molekulide arv ruumalaühikus. Seega
Viimane valem eeldab, nagu liiguksid kõik molekulid ühesuguse kiirusega v. Kui molekulide kiirused on erinevad, tuleb arvutada kiiruste ruutude keskväärtus
ja asendades saame
Gaasi rõhk on võrdeline molekulide tihedusega ruumalaühikus ja ühe molekuli keskmise kineetilise energiaga. Kas dimensioonid klapivad?
Temperatuuri seos molekulide kineetilise energiaga. Olles sidunud rõhu molekulide kineetilise energiaga kasutame edasi gaaside olekuvõrrandit, mis seob rõhu temperatuuriga. nII saame temperatuuri siduda molekulide kineetilise energiaga. Kuna
siis võime viimase valemi kirjutada kujul
Siin l3 on nõu ruumala n on selles nõus olevate molekulide arv. Kui võtame molekulide arvuks ühe mooli ehk n = Na, siis on nõu ruumala võrdne mooli ruumalaga V0 ja selle rõhk on seotud temperatuuriga olekuvõrrandi kaudu:
Valemi keskmises liikmes on ühe mooli gaasi kõigi molekulide kineetiliste energiate summa, Ek
Seega,
Oleme leidnud väga tähtsa suuruse, ühe mooli gaasi keskmise kineetilise energia sõltuvalt temperatuurist. Tuletaud seos on õige kerakujuliste molekulide jaoks, mis liiguvad ainult translatoorselt, kuid ei sisalda võnke- ega pöörlemisenergiat. Tegur 3/2 tuleneb sellest, et iga teljesuunaline liikumise komponent kannab energiat RT/2. Kaheaatomsetes molekulides võivad aatomid (lisaks molekuli translatoorsele liikumisele) veel omavahel võnkuda ja tiirelda. Need kas viimast liikumisvõimalust kannavad ka kumbki sellesama hulga energiat, RT/2, ja kaheaatomse molekuliga gaasi mooli koguenergia on seega 5/2RT. Niisugust liikumisvõimaluste arvu nimetatakse molekulide vabadusastmete arvuks ja see mäarab, kui palju energiat tuleb kokku kulutada gaasi temperaturi tõstmiseks ühe kraadi võrra või kui palju seda vabaneb gaasi jahtumisel. Peame meeles suuruse RT väärtuse toatemperatuuril:
Selle suurusega tuleb võrrelda keemilistes reaktsioonides mooli kohta vabanevat või nõutavat energiat, et mõista nende kulgemise võimalikkust. Võrdleme seda suurust veel energiaga elektronvoltides. Elektronvolt oli töö, mida tuli teha, et elektron viia ühe voldi võrra negatiivsemale potentsiaalile: 1eV=1.602x10-19 J. Kui viime terve mooli elektrone 1V võrra kõrgemale energiale, teeme tööd 1.602x10-19x6.023x1023=96480 J mol-1V-1. See arv on tuntud Faraday arvuna ja tähistab tööd, mida tuleb teha, et üks mool elektrone viia läbi potentsiaalide vahe 1V. Võrreldes sellega on RT väike suurus, RT(V) = 2436/96480=0.0253V = 25.3 mV. Bioloogiliselt tähtsad potentsiaalide vahed raku- ja mitokondrite membraanidel on 50-150 mV, seega 2 kuni 6RT. Võrdleme RT veel valguse kvandi energiaga. Punase kvandi energia oli 1.8 eV, seega kukkus elektron punat kvanti kiirates 1.8V võrra. Punase valguse lainepikkus on 680 nm. RT (25.3mV) moodustab ainult 1.4% punase kvandi energiast. RT võrra erinev energia väljenduks lainepikkuse muutusena 1.4% võrra ehk 9.6 nm võrra. Kuna keskmiselt nii suur energia on toatemperatuuril pidevalt olemas ja kandub orbitaalidele üle molekulide põrgetes, siis ei saagi aatomid (molekulid) kiirata enam kindlat lainepikkust vaid ribade laiuseks kujuneb keskmiselt ±10 nm. Energiale 2436 J/mol vastaks õhus molekulide ruutkeskmine kiirus
kust v = 410 m s-1 (siin M on mooli mass, õhu puhul ligikaudu 0.029 kg).
Kuigi tuletasime temperatuuri ja molekulide liikumise kineetilise energia vahelise seose gaaside jaoks, on temperatuuride tasakaalu korral energiad vabadusastme kohta võrdsed ka vedelikes ja tahketes kehades (tahkistes). Molekulide vabadusastmete arv gaasides, vedelikes ja tahkistes on aga erinev.
Soojamahtuvus, erisoojus
Eelnevast on selge, kui palju energiat tuleb kulutada ühe mooli gaasi soojendamiseks ühe kraadi võrra. Sõltuvalt vabadusastmete arvust (molekuli ehitusest) on see kas 3/2RT või 5/2RT. kus T tähistab temperatuuri tõusu. Saadud väärtus on aga õige ainult juhul, kui gaasi ruumala jääb soojenedes samaks ja rõhk seejuures tõuseb. Seetõttu tuleb alati täpsustada, et tegu on mooli soojamahtuvusega ehk erisoojusega Cv konstantse ruumala puhul. Kui me soojendame gaasi ja lubame tal seejuures paisuda, näiteks nii et rõhk jääb konstantseks, siis teeb paisuv gaas lisaks veel tööd, tõugates seinu eemale rõhuga p. Gaasi paisumisel tehtud töö on pV. Teame aga, et ühe mooli gaasi puhul
Arvestades ka gaasi paisumisel tehtavat tööd tuleb konstantsel rõhul (suurenrval ruumalal) gaasi soojendamisel teha rohkem tööd: üheaatomse gaasi puhul 3/2RT+ RT=5/2RT ja kaheaatomse gaasi puhul 5/2RT+RT=7/2RT. Seega on gaasi erisoojus konstantsel rõhul (Cp) suurem kui konstantsel ruumal (Cv). Kasutatud soojusenergiast suurem osa (üheaatomsete gaaside puhul 60%) jääb gaasi siseenergiaks (molekulide kineetiliseks energiaks), ja väiksem osa (40%) teeb kasulikku mehaanilist tööd. Niimoodi töötavad kõik soojusmasinad, näiteks automootorid, kus bensiini põlemise teel soojendatakse silindris olevat gaasi ja lastakse sel siis paisuda kolvi alla liikudes ja autot edasi lükata. Ülaltoodust on ka näha, et mida suurem on suhe Cp/Cv seda suurem on gaasi soojendamisel tehtava mehaanilise töö osa võrreldes kogu kulutatud energiaga. Üheaatomsetel gaasidel on see suhe 5/3 kaheaatomsetel aga 7/5.
Gaasi kokkusurumisel tehtav töö.
Eelmises lõigus võtsime teadmiseks, kuidas gaasi kokkusurumisel (paisumisel) tehtav töö sõltub gaasi ruumala muutusest. Tuletame siiski selle valemi. Töö on jõu ja jõu suunas käidud teepikkuse korrutis. Gaasis mõjub nõu pinnaühikule jõud p. Mingile pinnale S mõjub jõud pS. Kui kujutleme, et see pind on nagu kolb, mis võib liikuda rõhu mõjul, siis liikudes teepikkuse s võrra tehakse tööd pSs. Aga Ss=V ja tehtud töö ongi A=pV. Liikumist komponentideks jagades ei jäävad määravaks ainult pinnaga ristisuunalised komponendid ja gaasi nõu kuju muutustele viivad tangentsiallkomponendid tööd ei tee. Seega, ei ole tähtis, kuidas ruumala muutub ja missugused on seejuures toimuvad nõu kuju muutused. Küll on aga oluline, et gaasi rõhk jääks ruumala suurenemisel samaks. See on aga võimalik ainult siis kui gaasi samal ajal soojendada.
Kui me aga surume gaasi kokku ja seda ei soojenda, vaid hoopis hoiame temperatuuri konstantsena, siis kokkusurumisel paratamatult gaasi rõhk tõuseb. Selles protsessis tehtava töö arvutamiseks tuleb rakendada integreerimist. Elementaartöö väikesel ruumala muutusel
Aga gaasi olekuvõrrandist saame rõhu avaldada ruumala kaudu:
Asendades ja tuues konstantsed liikmed integraali ette saame
Gaasi oleku võrrandit kasutades saab avaldada sellesama töö ka alg ja lõpprõhkude kaudu:
Kuna konstantsel temperatuuril rõhk ja ruumala on pöördvõrdelised,
siis
Viimast valemit kasutame allpool, et leida rakumembraanil ainete kontsentratsioonide erinevusest tulenevat energiat, nn. membraani eneergiseritust. Tuletame meelde, et see valem esitab gaasi paisumistöö (kokkusurumistöö) konstantsel temperatuuril, samal ajal kui valem ?? esitas selle konstantsel rõhul.















