FUUSIK~1 (731720), страница 11
Текст из файла (страница 11)
Adiabaatne protsess.
Mõlemad ülalkäsitletud protsessid nõuavad pidevat gaasi temperatuuri jälgimist ja välise soojuse või jahutaja kaudu reguleerimist, sest neis mõlemis peab temperatuur igal juhul konstantne olema. Jalgratta- või autikummi pumbates oleme täheldanud, et pump kuumeneb, kuigi me seda otse ei soojenda, vaid ainult surume gaasi kokku. Me lihtsalt ei jahutanud pumpa küllalt kiiresti, et hoida temperatuuri konstantsena. Niisuguseid protsesse gaasidega, kus väline soojusvahetus on täielikult välditud, nimetatakse adiabaatseteks. Gaasi adiabaatsel kokkusurumisel gaasi temperatuur tõuseb. See tuleb sellest, et kokkusurumisel seinad liiguvad sissepoole ja seintelt tagasi põrkuvad molekulid suurema kiirusega kui nad seintele lähenesid, s.t., seina liikumise kiirus liitb molekuli liikumise kiirusele. Kokkuvõttes gaasi molekulide kineetiline energia suureneb. Gaasi ruumala vähendamisel on effekt vastupidine, tagasi põrkudes molekulid aeglustuvad. Selle tulemusena on adiabaatne protsess üsna keerukas: gaasi kokku surudes rõhk tõuseb kõigepealt ruumala vähenemise tõttu, aga lisaks veel temperatuuri tõusu tõttu, seega adiabaatses protsessis rõhk muutub rohkem kui isotermilise protsessi korral. Lahustes toimuvates protsessides, mis on bioloogias peamised, on temperatuur tavaliselt konstantne ja adiabaatseid nähtusi esineb harva.
Molekuli suurus, molekulidevaheline kaugus, vaba tee pikkus
nII kaua kui gaasi kokkusurumisel molekulide elektronkatted ei asu pidevalt üksteise mõjusfäaris (molekulid ei ‘puutu kokku’), on rõhu ja ruumala vaheline sõltuvus vastavuses gaasi olekuvõrrandiga. Rõhk tõuseb ainult sellepärast, et molekulide tihedus ruumalaühikus suureneb ja nad hakkavad tihedamini seinaga põrkuma. Öeldakse, et gaas käitub nagu ‘ideaalne gaas’, mille molekulid on nii väikesed, et kokkusurumist veel ei takista. Vaatame, kui suured on molekulid põrkumisraadiuse seisukohast. Võtame näiteks vee molekuli. Vedelas olekus on ühe mooli vee mass 18 g ja ruumala 18 cm3. Seega, Na molekuli täidavad 18 cm3. Ühe molekuli all olev ruumala on 18/6.023x1023= 2.989x10-23 cm3. Sellise ruumalaga kuubi külje pikkus oleks
3.10x10-8 cm = 3.10 A. Põrkeraadius oleks seega 1.55 A. Ka teiste õhus olevate gaaside molekulide põrkeraadiused on samas suurusjärgus. Toatemperatuuril on õhu moolruumala 24.15 l = 0.02415 m3. Ühe molekuli kohta tuleb ruumala 0.02415/Na = 4.0096x10-26 m3, vastav kuubi külg oleks
Molekulide keskmine kaugus õhus on umbes kümme korda suurem kui nende diameeter. Õhku tuleks umbes 1000 korda kokku suruda, et molekulid läheneksid kokkupuuteni (molekulidevaheline kaugus väheneb kuupjuurega ruumalast). See on ka piir mille juures ülaltoodud gaaside olekuvõrrand kehtivuse kaotab. Täpsuse kaotab ta aga juba kümme korda madalamal rõhul, mõnede gaaside puhul, nagu CO2 ja veeaur, isegi palju varem.
Tähtis gaasi parameeter on veel molekuli keskmine vaba tee pikkus, keskmine liikumisruum põrkest põrkeni. See määrab näiteks difusiooni kiiruse. Olgu meil gaas kus on n molekuli m3 kohta. ühe molekuli raadius olgu r. Lihtsustuseks kujutleme, et molekul liigub sirgjoneliselt ja lööb põrgetel teised molekulid eemale ise trajektoori muutmata. Niimoodi liikudes puudutab molekul kõiki teisi, mis asuvad silindris raadiusega 2r. Kui molekul liigub 1 m pikkuse tee, siis puudutab ta molekule, mille keskpunktid asuvad silindris ruumalaga
m3, ja neid oli
. Kuna 1 m tweepikkusel oli nimitu põrget, siis iga põrke vaheline keskmine vaba tee pikkus oli
kus d tähistab molekuli põrkediameetrit. Täpsem arvutus, mis arvestab ka põrgetel toimuvat trajektoorimuutust, annab veidi suurema keskmise vaba tee pikkuse:
Arvutame järgmiste andmetega:
Molekuli vaba tee keskmine pikkus on 1000 A =100 nm, kui molekulide keskmine kaugus on 33 A ja diameeter 3 A.
Difusioon
Nagu nägime, on molekulide kiirus toatemperatuuril üle 400 m/s ja põrkumisteta kataksid nad ka sellesama vahmaa sekundi jooksul. Tegelikult nad põrkuvad ja muudavad liikumise suunda iga 100 nm järel, mille tulemusena nende tegelik edasiliikumine ruumis on juhuslik ja tunduvalt aeglasem. Aga nad liiguvad siiski ja niisugune molekulide juhuslik ümberpaiknemine ruumis kannabki nimetust difusioon. Difusioonil on bioloogias suur tähtsus, olles peamine ainete transpordi mehhanism raku piires, samuti taime ja keskkonna vahel. Difusiooniprotsessis molekulid liiguvad juhuslikult igas suunas. Seejuures kõrgema tihedusega (kontsentratsiooniga) piirkondadest eemale toimub likumine suurema tõenäosusega kui madalama kontsentratsiooniga piirkondadest kõrgama kontsentratsiooniga piirkondadesse. Niimoodi toimub difusiooni käigus aine kontsentratsiooni ühtlustumine. On loogiline, et molekulide difusiooniline ümberpaiknemine ruumis toimub seda kiiremini, mida kiiremini molekulid liiguvad ja mida suurem on kskmine põrgetevahelise vaba tee pikkus. Kontsentratsiooni ühtlustumine toimub seda kiiremini, mida järsem on kontsentratsiooni muutus ruumis, s.t., mida suurem on kontsentratsiooni gradient. Gradient on mingi pideva suuruse muutumise kiirus ruumi koordinaadi järgi.
Näiteks toome valemi difusioonikiiruse kohta silindrilises torus, kus ühes otsas hoitakse kontsentratsiooni C1 ja teises otsas C2, toru pikkus on l ja ristlõikepindala on s:
kus
Nendes valemites l ja S on geomeetrilised parameetrid, mis iseloomustavad difusiooniteed, difusioonikonstant D aga iseloomustab difundeerivat ainet ja difusioonitingimusi:
Nagu näeme, on difusioonikonstant sõltuv molekulide lineaar-keskmisest kiirusest ja vaba tee pikkusest, kordaja 1/3 tuleneb jällegi sellst, et liikumist vaadeldakse iga koordinaadi suunas eraldi. Difusioonikiiruse valem, nn Fick’i seadus, on sarnane Ohmi seadusele, mis määrab elektrivoolu kiiruse läbi takistust omava traadi.
Difusiooni kiirus ajas ja ruumis
Eelnevad seosed võimaldavad arvutada difusioonivoo kiirust ruumis konstantse kontsentratsioonivahe (või gradiendi) puhul. Gradiendi konstantsuse säilitamiseks peab molekule pidevalt kuhugi ära kaduma. Näiteks, taimelehes süsihappegaas pidevalt neeldub fotosünteesi käigus ja seetõttu säilib lehes madalam CO2 kontsentratsioon kui välisõhus. Kui molekule ära ei kao, siis esialgu tekitatud kontsentratsioonivahe kaob mõninga aja pärast. Aga kui kiiresti see toimub? Difusioonilise liikumise kiiruse teadmine võimaldab hinnata kui kiiresti molekulid raku sees ümber paiknevad.
Vaatleme lihtsuse mõttes ühemõõtmelist juhtu. Oletagem, et sünteesisime mingi kogse metaboliiti raku keskel asuval tasandil ja küsime, kui kiiresti see difundeerub rakus laiali? Tuletame kõigepealt meelde Fick’i seaduse statsionaarse difusioonivoo J kohta ja defineerime voo tiheduse:
Siin dC/dx on kontsentratsiooni gradient e. kontsentratsiooni muutumise kiirus x-telje suunas, J on defineeritud kui aine voo tihedus, mida mõõdetakse pinnaühikut ajaühukus läbinud aine hulgaga, seega mooli m-2 s-1. Voo tiheduse mõiste sissetoomine võimaldab Fick’I seaduse lihtsasti kirjutada, ilma difusioonitee pikkust ja ristlõiget kasutamata.Valime kaugusel x meie tasapinnast, kus aine eraldus, ühe ühikulise pindalaga ruudu ja selle kõrvale kaugusele x+dx kohe teise ruudu, nii et saame nagu õhukese kasti (Joonis). Kohal x, kasti sisenedes, on voo tihedus J, kohal x+dx, kastist väljudes, on voo tihedus muutunud. Kuna see muutus on väike, kasutame Taylori ritta arendust ja avaldame
Kuna väljavoolukiirus ei võrdu sissevoolukiirusega, peab kasti ainet kogunema (või sealt kaduma), sest ruumilisi neeljaid me praegu ei arvesta. Meie ühikulise pinnaga kastikeses olgu aine hulk alguses Cdx (C on kontsentratsioon, pindala=1). See muutub tänu aine kogunemisele (lahkumisele) järgmise kiirusega
Pärast dx ja J taandamisi saame nn. pidevuse seaduse:
Seadus põhineb aine jäävusel ja väidab, et kui voo tihedus ruumis muutub, siis aine koguneb. Asendame nüüd J Fick’i seadusest
See on difusiooni üldine ajalis-ruumiline diferentsiaalvõrrand. Kolmemõõtmelisel juhul tuleb teised tuletised võtta kolme koodinaadi suunas. Meie ühemõõtmelisel juhul on selle võrrandi lahendiks funktsioon
Kus M on aine kogumass, mis eraldus protsessi alguses tasapinnal x = 0.
Võrrandi lahend on eksponent, mis kahaneb x kasvades ruumis kiiresti, kuid ulatub siiski kõikjale, seega peame konkretiseerima küsimust, ‘kui kaugele aine difundeerub mingi aja jooksul’. Utleme, et meid huvitab, kui kaugel on frondi kõige järsem osa, seal kus funktsiooni väärtus on e-1=0.36. Tingimus, et e astendaja = 1 tähendab, et
Difusioonifrondi levides selle kõige järsem koht kaugeneb võrdeliselt ruutjuurega ajast, näiteks 2 korda kui aeg kasvab neli korda. Aeg, mis kulub mingi distantsi läbimiseks kahaneb võrdeliselt kauguse ruuduga. Siit tulenebki, et väikestel distantsidel on difusiooniline transport efektiivne, kuid kaotab efektiivsuse distantsi kasvades väga kiiresti.
Anname mõned difusioonikonstandi väartused (ühikutes cm2 s-1):
Vees: suhkur 0.52 10-5 Õhus: CO2 0.16
glükoos 0.67 veeaur 0.24















