FUUSIKA5 (731718), страница 5
Текст из файла (страница 5)
Teiseks, gaaside ideaalne teooria arvestab täiesti elastsete põrgetega, mille juures molekulidevahelisi sidemeid ei teki, vaid molekulide kineetiline energia on jääv. Tegelikkuses on aga molekuide vahel mitte ainult tõukavad jõud (elektronkatete vaheline tõukumine), vaid teatud määral ka tõmbavad jõud. Nende olemasolu tulemusena muutuvad molekulidevahelised põrked sarnaseks kleepuvate piljardikuulide põrgetega: kuulide suurtel kiirustel kleepumisjõud ei ole tähelepandavad, kuid väikeste kiiruste puhul võivad kuulid kokku leepuda. Molekulide vastastikuse toime potentsiaalse energia kõver on esitatud Joonisel. Teatud kaugusel toimivad tõmbejõud, mis vähendavad potentsiaalset energiat, molekulide edasisel lähenemisel aga domineerivad elektronkatete-vahelised tõukejõud ja selles piirkonnas potentsiaalne energia kasvab kiiresti. Kui põrkuva molekuli kineetiline energia on suur, läbib ta potentsiaalse energia miinimumi lohu kiiresti ja põrkub tagasi kõrgenev potentsiaalse energia barjäärilt. Aeglastel molekulidel on aga suurem tõenäosus saada püütud potentsiaalse energia miinimumi lohku, muidugi juhul kui seda lohku läbides osa energiat eemaldub, näiteks samaaegsel põrkel kolmanda molekuliga või infrapunase kvandi kiirguse teel. Neid molekule siduvaid jõude nimetetakse Van der Waalsi jõududeks ja need on looduses väga olulised: tänu nendele moodustuvad vedelikud (vesi), biomembraanid, valgumolekulide kompleksid, need on rakke kooshoidvate jõudude aluseks jne.
Van der Waalsi jõudusid klassifitseeritakse orientatsiooni-, induktsiooni- ja dispersioonijõududeks.
Orientatsioonijõud toimivad polaarsete molekulide püsivate dipoolmomentide vahel. Nende mõju on pöördvõrdeline kauguse kuubiga kuni kuuenda astmega, seega väga lühikestel distantsidel. Püsiv dipoolmoment on näiteks vee molekulil ja see termin tähendab positiivse ja negatiivse laengukeskme mittekokkulangemist, = laeng x distants.
Polarisatsioonijõud on orientatsioonijõududega sarnased, kuid üks kahest molekulist ei peagi püsivat dipoolmomenti omama. Teine, dipoolmomenti omav molekul liigutab oma elektriväljaga esimese molekuli laengukeskmed paigast, nii et need enam kokku ei lange ja tekib indutseeritud dipool. Siin on jõud pöördvõrdeline r6.
Klassifitseeritakse veel nn. hetkelisi dipooljõudusid, mis peaksid sarnased olema hetkeliste sidemete moodustumisele. Näiteks vesinik-sideme tüüpi doonor-aktseptorside, kuid mitte tingimata vesiniku ja hapniku, vaid ka teiste aatomite vahel, võib moodustuda erinevate molekulide aatomite vahel, sidides nii molekule omavahel. Van der Waalsii jõudude suhtelised suurused ja tüübid mõnedes ainetes on antud Tabelis.
Tabel. Van der Waalsi jõud
Aine Dipoolmoment Orientatsiooni Induktsiooni Dispersiooni
[debai] 106 ergxcm6 106 ergxcm6 106 ergxcm6
CO 0.12 0.0034 0.057 67.5
HJ 0.38 0.35 1.68 388
HBr 0.78 6.2 4.05 176
HCl 1.03 18.6 5.4 105
NH3 1.5 84 10 93
H2O 1.84 190 10 75
(siin on jõud antud vanas füüsikalises, nn. Centimeeter-Gramm-Sekund süsteemis, kus
erg on töö, mida teeb jõuf üks düün teepikkusel 1 cm
düün on jõud, mis annab massile 1 g kiirenduse 1 cm s-2).
Paneme tähele, et orientatsioonijõud on suurimad vee molekulide vahel, millel on ka suurim dipoolmoment. Induktsioonijõud on suhteliselt väikesed, kuid dispersioonijõud võivad olla päris tugevad. See näitab, et viimane tüüp jõudusid omab osaliselt keemilise sideme iseloomu.
Molekulide oma-ruumala ja Van der Waalsi jõudude arvestamiseks on gaaside olekuvõrrandisse sisse toodud vastavad parandid:
Siin konstant b tähistab molekuli omaruumala, mis tuleb koguruumalast lahutada kokkusurumisele alluva ruumala leidmiseks. Liige a/V2 kujutab endast nn. “siserõhku”, mis tuleneb molekule siduvatest jõududest ja arvestatakse olevat pöördvõrdeline ruumala ruuduga. See avaldis peab ligikaudu kirjeldama molekule siduvate jõudude suurenemist nende lähenedes. Kuna molekulidevaheline kaugus kahaneb kuupjuurega ruumalast, siis pöördvõrdelisus ruumala ruuduga tähendab kuuenda astme sõltuvust kaugusest, nii nagu Van der Waalsi jõududel tõepoolest on. Kui ruumala vähenedes siserõhk suureneb, siis järjest vähem jääb välisrõhku p, kuni selleni, et teatud ruumala juures välisrõhk kaob hoopis. Selles seisundis gaas muutub vedelikuks. Matemaailiselt on avaldis (???) kuupvõrrand V suhtes, mis võib omada korraga kuni kolme lahendit. Sellel ei ole aga täielikku füüsikalist sisu, sest gaaside olekuvõrrandisse sissetoodud parandusliikmed on ikkagi ligikaudsed ja empiirilised. Võrrandi tähtsaim väljund on võimalus arvutada, missuguse temperatuuri, ruumala ja rõhu kombinatsiooni juures mingi aine veeldub, s.t.esineb vedelas ja gaasilises faasis korraga. Näitena on Joonisel esitatud CO2 isotermid (P-V sõltuvused konstantse temperatuuri juures). Kõrgemal kui 304 K temperatuuril ei ole võimalik CO2 rõhu abil veeldada (punkt K, 72.9 atm). Rõhku võib tõsta kuitahes kõrgele, kuid vedeliku pinda ei teki, vaid gaas lihtsalt tiheneb üle kogu ruumala. Viirutatud osa parempoolne äär näitab, kuidas veeldumisrõhk väheneb temperatuuri langedes, näiteks 273K juures on see veidi alla 50 atm. Matemaatiliselt on see ala, kus võrrandil (???) on kolm lahendit. Kui veeldumisrõhk on saavutatud ja ruumala edasi vähendada, siis rõhk enam ei muutu ja järjest rohkem gaasi kondenseerub vedelasse olekusse. Sellele protsessile vastavad horisontaal-lõigud Joonisel. Samal ajal annab Van der Waalsi võrrand keeruka kõverjoone kolme ruumala väärtusega, mis vastavad samale rõhule. See tähendab, et tegelikkuses on selles osas lõpmata palju ruumala väärtusi sama rõhu juures, võrrand aga annab neid ainult kolm. Füüsikaline mõte on jällegi viirutatud ala vasakul äärel, mis näitab, kui suure ruumala juures kogu gaas on veeldunud (kõik molekulid lähestikku) ja edasine ruumala vähendamine on seotud rõhu ülikiire tõusuga (vedelik ei ole praktiliselt kokkusurutav). Seega, vaatamata ebatäpsusele veeldumisprotsessi käigu kirjeldamisel, on Van de Waalsi võrrandist palju kasu, sest ta annab korrektsed rõhu, temperatuuri ja ruumala väärtused, mille juures veeldumisprotsess algab ja millal kogu gaas on veeldunud.














