diplom (730111), страница 5
Текст из файла (страница 5)
Кронштейн для подвески тылового рычага, состоящий из двух симметричных частей, был размещен и приварен сверху с каждой стороны продольного технологического окна на соединительной балке 11 с удалением от центра подпятника на 0,46м. При этом обнаружились существенные недостатки конструкции кронштейна. Габаритные размеры его по высоте и ширине (с учетом ширины технологического окна балки) составили соответственно 0,335 и 0,29м. На основании же исследований, из условия прохождения вагоном сортировочной горки и кривой с радиусом до 60м, допускаемая высота кронштейна должна быть не менее 0,346мм, а ширина в сборе с рычагом и валиком шарнира кронштейна – менее 0,2м [3]. Практически неизменная ширина кронштейна по всей его высоте усложняет постановку валика в отверстии кронштейна при не выкаченной из-под вагона тележки и требует в этом случае обязательного выполнения окна в стенке хребтовой балки опоры котла.
Поэтом была изготовлена новая конструкции кронштейна с изменяемой по высоте шириной, максимальная величина которой значительно ниже 0,2м. Можно отметить, что кронштейн, с подвешенным тыловым рычагом, установлен с большим запасом по отношению к стенке и потолку хребтовой балки опоры котла. При прохождении вагоном сортировочной горки смещение в вертикальной плоскости кронштейна не превышает 0,037м, а образовавшийся после установки кронштейна зазор превышает возможное смещение.
Обеспечение вагона тормозными средствами характеризуется следующими подсчитываемыми величинами коэффициентов расчетного нажатия тормозных колодок [3];
Для чугунных тормозных колодок:
на груженом режиме δр =0,33;
на порожнем режиме δр =0,61.
Для композиционных тормозных колодок:
на среднем режиме δр =0,16;
на порожнем режиме δр =0,32.
Расчетная величина выхода штока тормозного цилиндра с учетом свободного зазора между колесами и колодками 5-8мм и упругими деформациями элементов рычажной передачи соответствовала установленным нормами величинам и составляла 91-120мм при чугунных и 47-64мм при композиционных колодках [4].
При проверке автотормоза на отсутствие юза колесной пары в процессе торможения, полученные расчетные коэффициенты сцепления не превышали допускаемые значения.
Полученные расчетные характеристики позволили обоснованно сделать заключение, что тормозная система с унифицированным раздельным приводом на четырехосные тележки отвечает требованиям МПС и обеспечивает необходимые нажатия тормозных колодок и достаточную эффективность на всех режимах торможения.
-
Анализ схем пневматической части автотормоза
Принимая за основу тормозную систему с индивидуальным приводом на каждую четырехосную тележку, была рассмотрена только механическая часть. Однако использование на вагоне этой схемы автотормоза приводит к увеличению числа тормозных цилиндров и, в принципе, к видоизменению пневматической части по сравнению с типовой системой. При этом имеется ряд предложений, связанных с выбором принципиальной схемы пневматической части при проектировании автотормоза.
Потребность в разработке новых схем возникла в результате следующего. Установленный в системе автотормоза с индивидуальным приводом объем запасного резервуара, равный 0,16 м3 позволяет обеспечить нормативные давления в тормозном цилиндре во всем диапазоне зарядных давлений и эксплуатации выхода штока только для среднего режима воздухораспределителя. Использование же груженого режима приводит к сужению некоторых величин, то есть области допустимого варьирования в эксплуатации. Так, при максимальном выходе штока 0,175м, конечные нормативные давления обеспечиваются при данном объеме запасного резервуара лишь для зарядного давления не ниже 0,53Мпа. Уменьшение зарядного давления до 0,45Мпа, минимально допустимое в хвосте длинно составного поезда, при управлении с головы состава, по условию обеспечения конечных давлений требует повышение объема запасного резервуара свыше 0,3 м3. Это в свою очередь приведет к увеличению времени его зарядки и расходу сжатого воздуха, что замедлит зарядные процессы в поезде и приведет к повышению затрат при эксплуатации системы. В месте с этим, увеличение количества тормозных цилиндров, а по существу, питаемого из запасного резервуара выходного объема, привело к увеличению времени их заполнения, которое для среднего режима воздухораспределителя и выхода штока 0,1м составляет 20сек, а для грузового режима и того же выхода штока – 40сек.
На основе рекомендаций по времени торможения можно дать заключение, что груженый режим в пневматической части с одним воздухораспределителем не приемлем по условию динамических характеристик схемы при торможении [5]. Кроме того, значительное влияние выхода штока на время наполнения тормозных цилиндров обуславливаем уменьшение эффективности автотормоза при увеличении последнего. Поэтому в существующей пневматической схеме было введено дополнительное устройство – реле давления (Р.Д).
В качестве основных вариантов пневматических схем с Р.Д. были рассмотрены следующие:
-
схема, использующая принципы раздельного наполнения двух тормозных цилиндров по двум ветвям. Первая ветвь включает в себя воздухораспределитель, а вторая – реле давления. При этом, управляющий сигнал в камеру реле давления поступает от воздухораспределителя через тормозной цилиндр первой ветви (рис.3.4.);
-
схема, использующая принцип наполнения тормозного цилиндра, минуя воздухораспределитель, через реле давления. Здесь воздухораспределитель используется для управления (рис.3.5.)
Результаты экспериментальных исследований [5] эффективности автотормоза с индивидуальным приводом показали, что для чугунных колодок и груженого режима воздухораспределителя при скорости 90км/ч полученные тормозные пути выше нормируемых значений. Вместе с этим, превышение нормативных величин тормозного пути для схемы без реле давления наблюдалось практически во всем диапазоне скоростей. А для схемы с Р.Д. и управляющим объемом незначительные превышения наблюдались только в диапазоне скоростей от 90 до 100 км/ч.
Для композиционных колодок и среднего режима воздухораспределителя схемы имеют запас по эффективности. При этом для схемы без Р.Д. запас составляет 156-176м, а для скорости 20 км/ч наблюдалось превышение нормативного пути на 38м. Лучшие показатели оказались у схемы с Р.Д. и управляющим объемом. Запас при скорости движения 98 км/ч составляет 43м. Это свидетельствует о более высокой эффективности автотормоза, оборудованного пневматической частью Р.Д. и управляющим объемом (У.О.). Выход штока для схемы с одним воздухораспределителем на композиционных колодках устанавливается 0,1м. Увеличение выхода штока у данной схемы приводит к снижению эффективности автотормоза в целом [5]. Наоборот, для схемы с Р.Д. и У.О., наблюдаемые тормозные пути стабильны во всем установленном диапазоне выхода штока (до 0,15м). В целом экспериментальные исследования свидетельствуют о более высокой и стабильной эффективности схемы с Р.Д. и У.О. для всего диапазона эксплуатационного выхода штока.
Существующие недостатки схемы без Р.Д. проявляются в случае использования груженого режима воздухораспределителя, что подтверждает вывод о запрещении использования этого режима на данной схеме. Использование этого режима приводит к наиболее равномерным, в сравнении с другими схемами, процесса торможения. Вместе с этим, определенным недостатком является реализация увеличенного в сравнении с другими схемами времени торможения в составе на этом режиме воздухораспределителя. Это влияет на снижение эффективности автотормоза и ее сохранение требует обеспечение повышенных нажатий тормозной колодки на колесо, за счет увеличенного передаточного числа тормозной рычажной передачи.
На основании всесторонних исследований характеристик пневматической части даны рекомендации, заключающиеся в том, что схема с одним воздухораспределителем может быть использована на восьмиосных цистернах с нагрузкой на ось не выше 220 кН. Ограничением является использование груженого режима. В качестве более перспективной, при повышении давления на ось, предлагается схема с реле давления.
Однако, выбор пневматической части автотормоза неразрывно связан с характеристиками механической части, поэтому лучшим вариантом является подвод тормозной рычажной передачи наружной двухосной тележки к тормозному цилиндру с внутренней стороны этой тележки.
-
Расчет котла цистерны
В приближенном методе расчета котла цистерны безрамной конструкции от действия внешних сил, согласно [4], рассматривается расчетная схема, приведенная на рисунке 4.1.
где q – равномерно распределенная нагрузка, кГ/м;
Рст – сила тяжести груза, Рст =120·103 кГ;
Тк – собственная сила тяжести кузова, кГ;
2Lк – длина кузова вагона, 2Lк =19,632 м.
где Т – тара вагона, Т=50·103 кГ;
nт – масса тележки модели 18-100, nт = 4,5·103 кГ;
nа – масса автосцепного оборудования, nа =1,5т кГ;
nторм – масса тормозного оборудования, nторм =0,5 ·103 кГ.
где R– реакция в опоре, действующая на пятник кузова со стороны подпятника тележки, кГ.
где М1– изгибающий момент от равномерно распределенной нагрузки, кГ·м;
nк – длина консоли кузова, nк =3,1 м.
где М2– изгибающий момент от равномерно распределенной нагрузки в середине кузова, кГ·м;
L – половина базы вагона, L =9,816 м.
где МN– изгибающий момент от действия продольной нагрузки N, кГ·м;
Z – расстояние от центра тяжести поперечного сечения кузова до линии действия продольных сил N, Z =1,871 м.
Давление паров жидкости внутри котла Рп принимают 0,15 Мпа или 1,5 кГ/см2.