KONRAB (729657)
Текст из файла
Кубанский государственный технологический университет
Кафедра автоматизации технологических процессов
Задание на контрольную работу
По дисциплине “Автоматизированное управление дискретными процессами” для студентов заочной формы обучения специальности 21.01 — “Автоматика и управление в технических системах” на тему: “Синтез управляющего автомата модели LEGO — “транспортная тележка” и моделирование её движения вдоль трассы”
Выдано:
Аспирантом каф. АПП 06.09.99 /Напылов Р.Н./
студенту гр. ____________ /____________/
Краснодар 1999
1Исходные данные
1.1Управляемый процесс — движение модели LEGO транспортной тележки вдоль заданной траектории в виде белой полосы. Ориентация тележки относительно трассы регулируется датчиками контраста.
1.2Условная схема транспортной тележки приводится на рисунке 1 .1. Тележка движется за счёт заднего привода, создающего постоянное тягловое усилие
. Вращение переднего колеса тележки осуществляется с помощью реверсивного поворотного двигателя, отрабатывающего с постоянной угловой скоростью
, где
— угол поворота переднего колеса (рисунок 1 .1)
1.3Транспортная тележка, как объект управления имеет систему дискретных входных и выходных сигналов, структурно представленную на рисунке 1 .2. Кодировка указанных сигналов следующая:
Таблица 1.1 – Кодировка управляющих сигналов
Разряд сигнала X | Управляющее действие |
X0 | 1 – двигатель тележки включен 0 – двигатель тележки выключен |
X1 | 1 – поворотный двигатель отрабатывает влево 0 – двигатель влево не отрабатывает |
X2 | 1 – поворотный двигатель отрабатывает вправо 0 – двигатель вправо не отрабатывает |
Таблица 1.2 – Кодировка выходных сигналов
Разряд сигнала Y | Событие |
Y0 | 1 – левый датчик над светлой точкой трассы 0 – левый датчик над тёмной точкой трассы |
Y1 | 1 – правый датчик над светлой точкой трассы 0 – правый датчик над тёмной точкой трассы |
Д — датчики контраста;
ц — центр масс тележки;
— вектор тяглового усилия двигателя;
— вектор приведенной силы трения;
— вектор реакции трассы (опоры) на переднее колесо;
— центростремительная реакция трассы;
— упрощенная габаритная определяющая;
— расстояние между датчиками контраста.
Рисунок 1.1 – Динамическая схема транспортной тележки

— трёхразрядный управляющий сигнал;
— двухразрядный выходной сигнал.
Рисунок 1.2 – Структурная схема управления транспортной тележкой

Сигналы Y используются в качестве обратной связи управляющего автомата. По изменению этих сигналов возможно судить о текущем положении тележки относительно белой полосы трассы. Сигналы X вырабатываются управляющим автоматом в зависимости от поведения во времени сигналов Y так, что бы обеспечить совпадение траекторий движения тележки и трассы.
1.4Решение о подачи питания на задний привод тележки и, расположенный на ней, управляющий автомат принимает внешний оператор. Поэтому, исходным состоянием тележки является активность двигателя привода. В этом случае задача управляющего автомата состоит только в обеспечении движения тележки вдоль трассы.
1.5Допущения, делаемые при рассмотрении управляемой тележки в динамике:
-
приведённая сила трения
пропорциональна линейной скорости движения тележки;
-
сила трения
, подменяющая реакцию
в момент, когда
(переднее колесо проскальзывает), постоянна и пропорциональна массе тележки;
-
сила трения
, подменяющая реакцию
в момент, когда
(тележку заносит), также постоянна и пропорциональна массе тележки;
-
масса тележки
и её момент инерции
относительно центра масс связаны зависимостью:
, как если бы вся масса тележки была сосредоточена в стержне
(рисунок 1 .1).
2Основное задание
2.1Сформировать модель управляющего автомата в форме таблицы переходов и выходов автомата Милли, предварительно составив список его возможных состояний и перекодировав входной алфавит автомата во множество многозначной логики (Y - четырёхзначное);
2.2Минимизировать, в случае возможности, таблицу переходов и выходов автомата Милли;
2.3Составить алгебрологические выражения функции переходов и функции выходов минимизированного автомата, используя только двоичное представление входных и выходных сигналов;
2.4Минимизировать полученные функции;
2.5По минимизированным логическим функциям зарисовать цифровую схему управляющего автомата (стандарт условного графического изображения логических элементов — Российский).
3Дополнительное задание
Вывести модель динамики транспортной тележки. Положение центра масс тележки в плоской системе координат задавать вектором положения . Положение точки приложения силы тяги привода задавать вектором
.
4Список источников
4.1Юдицкий С.А., Магергут В.Э. Логическое управление дискретными процессами. Модели, анализ, синтез. — М.: Машиностроение, 1987. — 176 c.
4.2Кузнецов О.П., Адельсон-Вольский Г.М. Дискретная математика для инженеров. — М.: Энергоатомиздат, 1987. — 450 c.
4.3Шварце Х., Хольцгрефе Г.-В. Использование компьютеров в регулировании и управлении: Пер. с нем.—М.: Энергоатомиздат, 1990. — 176 с.: ил.
4.4Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. — М.: Энергоатомиздат, 1987. — 304 c.
4.5Мишель Ж., Лоржо К., Эспью Б., Программируемые контроллеры. — Пер. c французского А.П. Сизова — М.: Машиностроение, 1986.
4.6Микропроцессоры: В 3-х кн. Кн. 2. Средства сопряжения. Контролирующее и информационно-управляющие системы: Учеб. Для втузов/В.Д. Вернер, Н.В. Воробьёв, А.В. Горячев и др.; Под ред. Л.Н. Преснухина. — М.: Высш. шк., 1986. — 383 c.: ил.
4.7Фиртич В. Применение микропроцессоров в системах управления: Пер. с нем. — М.: Мир, 1984,—464 c., ил.
5Решение основного задания
5.1Выходной алфавит транспортной тележки является входным алфавитом управляющего автомата Y. Для возможности применения теории конечных автоматов перекодируем его во множество четырёх знаков в соответствии с таблицей 5 .1.
Таблица 5.1 – Кодировка входного алфавита управляющего автомата
Y0 | Y1 | Y |
0 0 1 1 | 0 1 0 1 | 0 1 2 3 |
5.2При определении возможных состояний управляющего автомата будем руководствоваться правилом: — допустимо введение избыточных состояний, которые при последующей минимизации автомата исключаются; недопустим пропуск необходимого состояния, который уменьшает адаптированность автомата к внешним ситуациям.
Перечень возможных состояний автомата, отождествлённых с ситуационными событиями транспортной тележки, приводится ниже.
Таблица 5.2 – Перечень состояний управляющего автомата транспортной тележки
Код | Описание состояния |
0 1 2 3 | Исходное состояние неуправляемого движения; Поворот вправо (поворотный двигатель непрерывно отрабатывает вправо); Поворот влево (поворотный двигатель непрерывно отрабатывает влево); Конфликт поворотов. |
5.3Для возможности формирования математической модели управляющего автомата рассмотрим описательный алгоритм управления транспортной тележки по состояниям:
-
В исходном состоянии тележка непрерывно движется под действием привода. Ни один из датчиков контраста не находится над белой полосой трассы. Поворотный двигатель остановлен;
-
При возникновении белой полосы под левым датчиком контраста включается поворотный двигатель на отработку влево. Привод отключается и далее следует движение по инерции, что уменьшает вероятность заноса тележки;
-
Как только левый датчик контраста “сходит” с белой полосы поворотный двигатель останавливается в текущем состоянии, а привод вновь запускается;
-
При возникновении белой полосы под правым датчиком — поведение транспортной тележки аналогично;
-
Возникновение белой полосы под правым и левым датчиком свидетельствует о том, что тележка движется перпендикулярно трассе. Это сбойная ситуация, при которой следует отключение привода и блокировка управляющего автомата. Нормальный ход работы автомата может быть восстановлен только “сбросом”.
5.4Поскольку управляющий сигнал имеет три разряда, то для составления модели автомата Милли необходимо построить три таблицы переходов и выходов. Указанные таблицы, эквивалентные описательному алгоритму управления, приводятся ниже.
Таблица 5.3 – Таблицы переходов и выходов управляющего автомата
5.5Как видно, состояния S0, S1, S2 явно эквивалентны, причём для каждого из выходов X. Представляется возможным эти эквивалентные состояния обозначить одним состоянием S0 – состояние управления тележкой. В этом случае, состояние блокировки S3 удобно переобозначить как S1 – состояние блокировки автомата. В результате получаем модель несократимого автомата Милли.
Таблица 5.4 – Таблицы переходов и выходов несократимого автомата
5.6Учитывая, что код состояния полученной модели описывается одноразрядным сигналом S, а также учитывая кодировку входных сигналов Y (табл. 5 .1), составим таблицу истинности комбинационной схемы автомата, непосредственно по таблице 5 .4 и введя обозначения: S[j] — текущий сигнал состояния, S[j+1] — сигнал состояний на следующем такте автомата.
Судя по таблице 5 .5, минимизации поддаётся только функция переходов . Минимизируем её методом карт Карно (см. рис. 5 .1).
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.