143733 (727163), страница 5

Файл №727163 143733 (Экономико-статистический анализ урожая и урожайности зерновых в Тверской области) 5 страница143733 (727163) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Уточним расчеты, рассчитав коэффициент Фехнера между двумя коррелируемыми показателями – т.е. урожайностью зерновых и внесением минеральных удобрений на 1 га посева.

Коэффициент Фехнера строится на сравнении поведения отклонений отдельных вариантов от своей средней величины по каждому признаку. При этом принимается во внимание не величина самих отклонений, а их знаки. Найдя отклонения от средней в каждом ряду, сравнивают знаки и подсчитывают число совпадений и несовпадений знаков. Если совпадения знаков обозначить символом С, а несовпадения – Н, то коэффициент Фехнера можно записать так:

Кф=(С-Н)/(С+Н). (№ 3, с 159)

Построим необходимую для расчетов таблицу.

Таблица 9

Расчет коэффициента Фехнера.

Урожайность зерновых (x)

Внесение минеральных удобрений на 1 га

(y)

x-xc

y-yc

3,0

7

-

-

9,3

9

-

+

10,6

8

+

-

11,2

10

+

+

11,2

10

+

+

12,5

7

+

-

13,0

7

+

-

Xc=10,1

Yc=8,3

Число совпадений знаков – 3, число несовпадений – 4. отсюда коэффициент Фехнера

Кф=(3 – 4)/(3 + 4)= - 0,2.

Судя по значению коэффициента, можно сделать вывод о малой степени зависимости между рассмотренными показателями. Следовательно, внесение минеральных удобрений не является основным фактором, влияющим на урожайность.

Проведя аналогичным образом расчет коэффициента Фехнера по влиянию внесения органических удобрений на урожайность, получаем значение 0,2, что подтверждает правильность сделанных ранее расчетов и вывода. Таким образом, на урожайность зерновых внесение удобрений не оказывает большого влияния.

3.3. Группировка лет, отличающихся метеорологическими условиями.

Наиболее простым приемом определения эффекта изменения количества осадков, температуры и т.д. является объединение лет, обладающих близкими уровнями таких признаков, в соответствующие группы с последующим сравнением средних уровней урожайности в этих группах.

Приведем таблицу с соответствующими данными Тверской области:

Таблица 10

Урожайность зерновых (ц с 1 га) в хозяйствах Тверской области в зависимости от весенних и зимних осадков.

Пределы осадков (интервалы группировки), мм

Число лет

Среднее количество осадков, мм

Урожайность зерновых, ц с 1 га

Группировка по количеству весенних (апрель-июнь) осадков

49-118

3

84

9,3

119-187

4

178

11,8

188-257

3

223

11,6

Группировка по количеству зимних (ноябрь-март) осадков

155-200

6

179

12,4

201-245

2

213

6,15

246-290

2

286

11,6

(№ 1; № 9, с 21)

Группировка показывает прямую зависимость между средним количеством осадков в группе и урожайностью зерновых. Но в то же время, зависимость эта не сильная, так как на урожайность влияет множество различных факторов, а не только погодные условия. Этот показатель достаточно сложен в изучении и требует дополнительных расчетов. Для установления более точной зависимости воспользуемся корреляционно-регрессионным анализом, который будет рассмотрен ниже в пункте 3.5.

3.4.Корреляционно-регрессионный анализ для определения степени влияния внесения удобрений на урожайность.

Для более глубокого исследования взаимосвязи социально экономических явлений рассмотренные статистические методы часто оказываются недостаточными, ибо они не позволяют выразить имеющуюся связь в виде определенного математического уровня, характеризующего механизм взаимодействия факторных и результативных признаков. Это устраняет метод анализа регрессий и корреляций — регрессионно – корреляционный анализ (РКА), являющийся логическим продолжением, углублением более элементарных методов.

РКА заключается в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), выражающего зависимость явлений от определяющих его факторов.

РКА состоит из следующих этапов :

  1. Предварительный (априорный) анализ;

  2. Сбор информации и первичная обработка;

  3. Построение модели (уравнения регрессии);

  4. Оценка и анализ модели.

Подобное деление на этапы весьма условно, так как отдельные стадии тесно связаны между собой и нередко, результат полученный на одном этапе, позволяет дополнить , скорректировать выводы более ранних стадий РКА.

Основным и обязательным условием корректности применения РКА является однородность исходной статистической совокупности. Так, например если, изучается зависимость урожайности определенной сельскохозяйственной культуры от количества внесенных удобрений, очень важно, чтобы совокупность колхозов была однородна по климатическим условиям, почвенным зонам, специализации и т.п., различие которых оказывает влияние на величину урожайности.

Регрессионно – корреляционные модели могут быть использованы для решения различных задач: для анализа уровней социально – экономических явлений и процессов, например для анализа хозяйственной деятельности предприятия и вскрытия резервов, для прогнозирования и различных плановых расчетов.

Использование моделей позволяет значительно расширить возможности анализа, в частности анализа хозяйственной деятельности предприятий.

Рассмотрим расчет параметров для линейной парной регрессии.

При парной прямолинейной регрессии, увеличение факторного признака влечет за собой равномерное увеличение или снижение результативного признака. Для того чтобы установить аналитически форму связи необходимо пользоваться методами аналитических группировок, сравнения параллельных рядов и наиболее эффективным графическим методом.

Если связь прямолинейная, то аналитически такая связь записывается уравнением прямой yx=a0+a1x. Нужно иметь в виду, уравнение регрессии правильно выражает лишь при условии независимости коэфициентов a0 и a1 от факторного признака x либо такой незначительной зависимости, которой можно пренебречь.

Для нахождения параметров a0 и a1 строится система нормальных уравнений.

a0n + a1∑ x =∑y

a0∑ x + a1∑ x 2=∑y x

где a0 и a1 – неизвестные параметры уравнения;

x – внесение удобрений на 1 га;

y – урожайность с 1га;

n – количество лет исследования.

(№ 5, с 129 – 135)

Найдем значение a0 из первого уравнения:

a0=(70,8 - 58a1)/ 7

a0=10,11 – 8,28a1

Подставим во второе уравнение:

(10,11-8,28 a1)* 58 +492a1=592

11,76 a1=5,62

a1=0,47

Найдем a0 подставив a1 в 1 уравнение:

7a0 + 58*0,47 =70,8

a0=(70,8-27,26)/7

a0=6,22

Подставим значения в уравнение прямой:

yx=6,22+0,47x

Таблица 11.

Расчетная таблица за 7 лет.

Годы

Урожайность, ц с 1 га Y

Внесено удобрений на га посева, кг X

X2

XY

1995

11,2

10

100

112

1996

13,0

7

49

91

1997

11,2

10

100

112

1998

9,3

9

81

83,7

1999

3,0

7

49

21

2000

10,6

8

64

84,8

2001

12,5

7

49

87,5

Итого

70,8

58

492

592

(№ 2, № 9, с 42)

После проведенных расчетов, приходим к выводу об изменении урожайности в зависимости то количества внесенных удобрений. Это более наглядно показано на нижеприведенном рис. 2. Чем больше вносилось удобрений под зерновые, тем выше была их урожайность.

Для нахождения параметров а0 и а1 при линейной зависимости могут быть предложены готовые формулы.

Так, для рассмотренного случая получаем:

а1 = (nxy - xy)/(nx2 - xx) ,

а0 = yc – a1xc.

Для нашего примера:

а1 = (7*592 – 58*70,8)/(7*492 – 58*58) = 0,47

а0 = 10,1 – 0,47*8,3 = 6,22.

Найденный в уравнении линейной регрессии коэффициент а1 при x именуют коэффициентом регрессии. Коэффициент регрессии показывает, насколько изменяется результативный признак y при изменении факторного признака x на единицу. В нашем случае, при изменении количества внесенных удобрений на 1 кг, урожайность изменяется на 0,47 ц/га.

В случае линейной зависимости между двумя коррелируемыми величинами тесноту связи измеряют линейным коэффициентом корреляции (r), который может быть рассчитан по формуле:

r = ai(x/y), где

ai – коэффициент регрессии в уравнении связи,

x – среднее квадратическое отклонение факторного признака,

y – среднее квадратическое отклонение результативного признака.

Характеристики

Тип файла
Документ
Размер
531 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6517
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее