143682 (727107), страница 2
Текст из файла (страница 2)
2.1Статистические показатели динамики социально – экономических явлений .
Для количественной оценки динамики социально – экономических явлений применяются статистические показатели : абсолютные темпы роста и прироста , темпы наращивания и т. д.
В основе расчета показателей рядов динамики лежит сравнение его уровней . В зависимости от применяемого способа сопоставления показатели динамики могут вычисляться на постоянной и переменной базах сравнения .
Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем . Исчисляемые при этом показатели называются базисными . Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим . Такие показатели называются цепными .
Способы расчета показателей динамики рассмотрим на данных товарооборота магазина в 1987 – 1991 гг. (см. таб. 2).
Абсолютный прирост – важнейший статистический показатель динамики , определяется в разностном соотношении , сопоставлении двух уровней ряда динамики в единицах измерения исходной информации . Бывает цепной и базисный :
-
Базисный абсолютный прирост
определяется как разность между сравниваемым уровнем
и уровнем , принятым за постоянную базу сравнения
(формула 1):
(1)
-
Цепной абсолютный прирост
– разность между сравниваемым уровнем
и уровнем , который ему предшествует,
(формула 2):
(2)
Абсолютный прирост может иметь и отрицательный знак , показывающий , насколько уровень изучаемого периода ниже базисного .
Между базисными и абсолютными приростами существует связь : сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего ряда динамики
(формула 3):
Ускорение – разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности (формула 4):
(4)
Показатель абсолютного ускорения применяется только в цепном варианте , но не в базисном . Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда .
Темп роста – распространенный статистический показатель динамики . Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах .
-
Базисные темпы роста
исчисляются делением сравниваемого уровня
на уровень , принятый за постоянную базу сравнения
, по формуле 5 :
(5)
-
Цепные темпы роста
исчисляются делением сравниваемого уровня
на предыдущий уровень
(формула 6):
(6)
Если темп роста больше единицы (или 100%) , то это показывает на увеличение изучаемого уровня по сравнению с базисным . Темп роста ,равный единице (или 100%) , показывает , что уровень изучаемого периода по сравнению с базисным не изменился . Темп роста меньше единицы (или 100%) показывает на уменьшение уровня изучаемого периода по сравнению с базисным. Темп роста всегда имеет положительный знак .
Между базисными и цепными темпами роста имеется взаимосвязь : произведение последовательных цепных темпов роста равно базисному темпу роста , а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста .
Темпы прироста характеризуют абсолютный прирост в относительных величинах . Исчисленный в процентах темп прироста показывает , на сколько процентов изменился сравниваемый уровень по отношению к уровню , принятому за базу сравнения .
-
Базисный темп прироста
вычисляется делением сравниваемого базисного абсолютного прироста
на уровень , принятый за постоянную базу сравнения
(формула 7):
(7)
-
Цепной темп прироста
-- это отношение сравниваемого цепного абсолютного прироста
к предыдущему уровню
(формула 8):
=
:
(8)
Между показателями темпа роста и темпа прироста существует взаимосвязь , выраженная формулами 9 и 10:
(%) =
(%) -- 100 (9)
(при выражении темпа роста в процентах).
=
-- 1 (10)
(при выражении темпа роста в коэффициентах).
Формулы (7) и (8) используют для нахождения темпов прироста по темпам роста .
Важным статистическим показателем динамики социально – экономических процессов является темп наращивания , который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала .
Вычисляются темпы наращивания Тн делением цепных абсолютных приростов на уровень , принятый за постоянную базу сравнения ,
по формуле 11:
(11)
2.2 Средние показатели в рядах динамики
Для получения обобщающих показателей динамики социально -- экономических явлений определяются средние величины : средний уровень , средний абсолютный прирост , средний темп роста и прироста и пр.
Средний уровень ряда динамики характеризует типическую величину абсолютных уровней .
В интервальных рядах динамики средний уровень у определяется делением суммы уровней на их число n (формула 12):
(12)
В моментном ряду динамики с равноотстоящими датами времени средний уровень определяется по формуле 13:
(13)
В моментном ряду динамики с неравноотстоящими датами средний уровень определяется по формуле 14:
, (14)
где – уровни ряда динамики , сохранившиеся без изменения в течение промежутка времени
.
Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики . Для определения среднего абсолютного прироста сумма цепных абсолютных приростов
делится на их число n (формула 15):
(15)
Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики . Для этого определяется разность между конечным и базисным
уровнями изучаемого периода , которая делится на m – 1 субпериодов (формула 16):
(16)
Основываясь на взаимосвязи между цепными и базисными абсолютными приростами , показатель среднего абсолютного прироста можно определить по формуле 17:
(17)
Средний темп роста – обобщающая характеристика индивидуальных темпов роста ряда динамики . Для определения среднего темпа роста применяется формула 18:
(18)
где Тр1 , Тр2 , ... , Трn -- индивидуальные (цепные) темпы роста (в коэффициентах), n -- число индивидуальных темпов роста.
Средний темп роста можно определить и по абсолютным уровням ряда динамики по формуле 19:
(19)
На основе взаимосвязи между цепными и базисными темпами роста средний темп роста можно определить по формуле 20:
(20)
Средний темп прироста можно определить на основе взаимосвязи между темпами роста и прироста . При наличии данных о средних темпах роста для получения средних темпов прироста используется зависимость , выраженная формулой 21:
(21)
(при выражении среднего темпа роста в коэффициентах)
-
Проверка ряда на наличие тренда. Непосредственное выделение тренда
Изучение тренда включает в себя два основных этапа :
-
Ряд динамики проверяется на наличие тренда
-
Производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных показателей – результатов .
Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .
-
Метод средних . Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина (
) . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда .
-
Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура) . Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае , если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).
-
Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .
-
Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).
Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале
.
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.