143682 (727107), страница 3

Файл №727107 143682 (Ряды динамики) 3 страница143682 (727107) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Среднее число серий вычисляется по формуле 22 :

. (22)

Среднее квадратическое отклонение числа серий вычисляется по формуле 23 :

. (23)

здесь n -- число уровней ряда .

Выражение для доверительного интервала приобретает вид

Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .

Непосредственное выделение тренда может быть произведено тремя методами .

  1. Укрупнение интервалов . Ряд динамики разделяют на некоторое достаточно большое число равных интервалов . Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления , переходят к расчету уровней за большие промежутки времени , увеличивая длину каждого интервала (одновременно уменьшается количество интервалов) .

  2. Скользящая средняя . В этом методе исходные уровни ряда заменяются средними величинами , которые получают из данного уровня и нескольких симметрично его окружающих . Целое число уровней , по которым рассчитывается среднее значение , называют интервалом сглаживания . Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).

При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.

Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда . Получают их специальными приемами – расчетом средней арифметической взвешенной . Так , при сглаживании по трем точкам выровненное значение в начале ряда рассчитывается по формуле 24 :

. (24)

Для последней точки расчет симметричен .

При сглаживании по пяти точкам имеем такие уравнения (формулы 25):

(25)

Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках .

Формулы расчета по скользящей средней выглядят , в частности , следующим образом (формула 26):

для 3--членной . (26)

  1. Аналитическое выравнивание . Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления . Развитие предстает перед исследователем как бы в зависимости только от течения времени . В итоге выравнивания временного ряда получают наиболее общий , суммарный , проявляющийся во времени результат действия всех причинных факторов . Отклонение конкретных уровней ряда от уровней , соответствующих общей тенденции , объясняют действием факторов , проявляющихся случайно или циклически . В результате приходят к трендовой модели , выраженной формулой 27:

, (27)

где f(t) – уровень , определяемый тенденцией развития ;

-- случайное и циклическое отклонение от тенденции.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .

Чаще всего при выравнивании используются следующий зависимости :

линейная ;

параболическая ;

экспоненциальная

или ).

  1. Линейная зависимость выбирается в тех случаях , когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты , не проявляющие тенденции ни к увеличению , ни к снижению.

  2. Параболическая зависимость используется , если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития , но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют .

  3. Экспоненциальные зависимости применяются , если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста , темпов прироста , коэффициентов роста) , либо , при отсутствии такого постоянства , -- устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста , цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).

Оценка параметров ( ) осуществляется следующими методами :

  1. Методом избранных точек,

  2. Методом наименьших расстояний,

  3. Методом наименьших квадратов (МНК)

В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :

.

Для линейной зависимости ( ) параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .

Построив уравнение регрессии , проводят оценку его надежности . Это делается посредством критерия Фишера (F) . Фактический уровень ( ) , вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением :

, (28)

где k -- число параметров функции , описывающей тенденцию;

n -- число уровней ряда ;

Остальные необходимые показатели вычисляются по формулам 29 – 31 :

(29)

(30)

(31)

сравнивается с при степенях свободы и уровне значимости  (обычно  = 0,05). Если > , то уравнение регрессии значимо , то есть построенная модель адекватна фактической временной тенденции.

  1. Анализ сезонных колебаний

Уровень сезонности оценивается с помощью :

  1. индексов сезонности ;

  2. гармонического анализа.

Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .

Если тренда нет или он незначителен , то для каждого месяца (квартала) индекс рассчитывается по формуле 32:

(32)

где -- уровень показателя за месяц (квартал) t ;

-- общий уровень показателя .

Как отмечалось выше , для обеспечения устойчивости показателей можно взять больший промежуток времени . В этом случае расчет производится по формулам 33 :

(33)

где -- средний уровень показателя по одноименным месяцам за ряд лет ;

Т -- число лет .

При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :

  1. для каждого уровня определяют выравненные значения по тренду f(t);

  2. рассчитывают отношения ;

  3. при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :

,(Т -- число лет). (34)

Другим методом изучения уровня сезонности является гармонический анализ . Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .

Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :

(35)

при t = 1, 2, 3, ... , Т.

Здесь -- фактический уровень ряда в момент (интервал) времени t;

f(t) – выравненный уровень ряда в тот же момент (интервал) t

-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .

Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :

  1. ; (36)

(37)

при n=1,2,...,(T/2 – 1);

3) (38)

  1. Анализ взаимосвязанных рядов динамики .

В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию , для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста .

Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда . Аналогично находятся и коэффициенты опережения по темпам прироста .

Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей . Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью , а прочими неучитываемыми факторами . Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций , а после этого провести анализ взаимосвязи по отклонениям от тренда . Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками .

Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих . Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 39) :

, (39)

где -- отклонение фактического уровня ряда в точке t от теоретического (выравненного) значения .

При К = 0 имеется полная положительная автокорреляция , при К = 2 автокорреляция отсутствует , при К = 4 – полная отрицательная автокорреляция . Прежде чем оценивать взаимосвязь , автокорреляцию необходимо исключить . Это можно сделать тремя способами .

  1. Исключение тренда с авторегрессией. Для каждого из взаимосвязанных рядов динамики Х и У получают уравнение тренда (формулы 40) :

(40)

Далее выполняют переход к новым рядам динамики , построенным из отклонений от трендов , рассчитанным по формулам 41 :

(41)

Для последовательностей выполняется проверка на автокорреляцию по критерию Дарбина – Уотсона . Если значение К близко к 2 , то данный ряд отклонений оставляют без изменений . Если же К заметно отличается от 2 , то по такому ряду находят параметры уравнения авторегрессии по формулам 42 :

Характеристики

Тип файла
Документ
Размер
357,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее