Teory (722476), страница 3
Текст из файла (страница 3)
Процессы в переходе металлполупроводник находятся в прямой зависимости от работы выхода электронов. Под работой выхода электрона подразумевается та минимальная энергия, которую надо сообщить электрону, чтобы он мог выйти из металла или из полупроводника. На рис. 1.6 приведены структуры переходов металлполупроводник с разной работой выхода электронов: Ам работа выхода электронов из металла; АП работа выхода электронов из полупроводника.
На рис. 1.6 (при Ам < АП) переход металлполупроводник не обладает выпрямляющими свойствами, так как при таких условиях будет преобладать выход электронов из металла и при любой полярности напряжения на переходе сопротивление слоя полупроводника будет малым, поскольку этот слой обогащен основными носителями. Такой контакт (невыпрямляющий) используется во всех полупроводниковых приборах в месте соединения области с внешним выводом и его называют омическим.
На рис.1.6 (при АП < Ам) переход также не обладает выпрямляющими свойствами, так как из полупроводника в металл выходит гораздо большее количество электронов, чем в обратном направлении, и в приграничном слое образуется область, обогащенная основными носителямидырками.
Рис. 1.6. Структуры переходов металлполупроводник с разной
работой выхода электронов
Эта область имеет низкое сопротивление независимо от полярности напряжения внешнего источника.
На рис. 1.6 (при АП < Ам) большая часть электронов из полупроводника будет переходить в металл, создавая в приграничном слое полупроводника обедненный основными носителями слой. Этот слой будет иметь большое сопротивление и в зависимости от полярности приложенного напряжения будет меняться высота потенциального барьера, поэтому такой переход обладает выпрямляющими свойствами.
Особенности перехода Шоттки:
1. На переходе таких приборов создается значительно меньшее падение напряжения (0,204 В), чем на электронно-дырочном переходе (рис. 1.7): при прохождении даже небольшого начального тока через контакт с большим сопротивлением на нем выделяется тепловая энергия, способствующая появлению дополнительных носителей.
2. Отсутствие инжекции неосновных носителей заряда.
3. Переходы работают только на основных носителях, следовательно, в приборах, изготовленных на основе эффекта Шоттки, практически отсутствует диффузионная емкость, связанная с накоплением и рассасыванием носителей.
Рис. 1.7. ВАХ диода Шоттки (ДШ) и обычного диода
4. Отсутствие диффузионной емкости существенно повышает быстродействие приборов, поэтому диоды, выполненные на основе такого контакта, обладают значительно лучшими переключающими свойствами, чем диоды на основе контакта полупроводникполупроводник.
Обладая высоким быстродействием, диоды Шоттки широко используются в цифровой технике (например, логика ТТЛШ).
Пример. Если оба перехода в биполярном транзисторе окажутся под прямым напряжением, то есть перейдут в режим двойной инжекции, то в базе накапливается большой объемный заряд, на рассасывание которого требуется определенное время. Транзистор переходит в режим глубокого насыщения, и его быстродействие заметно снижается. Чтобы предотвратить это, нельзя допускать прямосмещенного состояния коллекторного перехода. С этой целью коллекторный переход шунтируется диодом Шоттки (рис. 1.8); падение напряжения на диоде Шоттки составляет 0,20,4 В, следовательно, на коллекторном переходе устанавливается низкий уровень прямого напряжения, при котором невозможна заметная для режима ключа инжекция носителей из коллектора в базу и тем самым исключается глубокое насыщение транзистора, а его быстродействие повышается. На рис. 1.8 участок «диод Шоттки и коллекторный переход» транзистора выделены пунктиром. В схеме использован транзистор n-p-n-структуры. Напряжение на входе имеет прямоугольную форму: на входе чередуются импульсы высокого и низкого уровней. Эмиттерный переход транзистора отпирается при высоком уровне
входного сигнала и запирается при низком.
Рис. 1.8. Электронный ключ с диодом Шоттки
1.5. Выпрямительные низкочастотные диоды в блоках питания
1.5.1. Блоки питания на выпрямительных диодах
Источниками питания называются устройства, предназначенные для снабжения электронной аппаратуры электрической энергией и представляющие собой комплекс приборов, которые вырабатывают электрическую энергию и преобразуют ее к виду, необходимому для нормальной работы каждого узла электронной аппаратуры (рис. 1.9).
Основными звеньями выпрямительного устройства являются трансформатор и вентильный комплект вспомогательными фильтр и стабилизатор постоянного напряжения.
Трансформатор служит для преобразования переменного напряжения в переменное такого значения, которое необходимо для получения на выходе источника питания заданного постоянного напряжения.
Вентиль это прибор, имеющий несимметричную характеристику проводимости, малое сопротивление для прямого тока и большое сопротивление для обратного. С помощью вентиля переменное напряжение преобразуется в пульсирующее.
Фильтр предназначен для сглаживания пульсаций выпрямленного напряжения.
Стабилизатор это схема, которая отслеживает все изменения напряжения со стороны входа и выхода и поддерживает постоянным напряжение на нагрузке.
В настоящее время в электронных устройствах наиболее часто исполь- зуются следующие схемы выпрямителей:
однофазные (однополупериодные (ОПВ рис. 1.10, а), двухполупериодные (ДПВ с нулевым выводом и мостовая рис. 1.10, б, в соответственно);
многофазные (с нулевым выводом, мостовые схема Ларионова).
1.5.2. Параметры выпрямителей с любым характером нагрузки
Характер нагрузки на выходе выпрямителя определяется или самой нагрузкой, или первым элементом фильтра (фильтр может быть любой сложности).
7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).
а) б) в)
Рис. 1.10. Схемы однофазных выпрямителей: а ОПВ; б ДПВ со средним выводом; в мостовой ДПВ (схема Греца)
Параметры выпрямительных устройств
1. Действующее значение напряжения на вторичной обмотке трансформатора U2.
2. Амплитудное значение напряжения на вторичной обмотке трансформатора U2мах.
-
Среднее значение выпрямленного напряжения на нагрузке U0.
4. Среднее значение выпрямленного тока в нагрузке I0.
5. Действующее значение напряжения пульсаций на нагрузке Uп.
6. Максимальные изменения напряжения на нагрузке Uвых.
7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).
8. Коэффициент сглаживания Кс (это параметр фильтра).
9. Коэффициент полезного действия выпрямителя .
10. Амплитудное значение тока через диод.
11. Обратное напряжение на диоде наибольшая разность потенциалов, приложенная к диоду в тот момент времени, когда он не пропускает тока.
Во всех схемах выпрямителей активный характер нагрузки, то есть
сглаживающие фильтры отсутствуют.
1.5.4. Выпрямительные устройства
с простым емкостным фильтром на выходе
1.5.4.1. Анализ работы схемы и основные соотношения в ней
Назначение конденсатора на выходе выпрямителя сглаживать пульсацию в выпрямленном напряжении. При подключении конденсатора фильтра характер нагрузки становится емкостным.
Наличие конденсатора в схеме выпрямителя (рис.1.12, а) существенно меняет режим работы полупроводниковых диодов: напряжение на конденсаторе (рис. 1.12, б) в определенный момент времени делает потенциал катода диода больше потенциала анода и диоды запираются (моменты времени t2 и t4). С момента времени с t2 по t3 диоды заперты и находятся под обратным напряжением, а с t1 по t2 и с t3 по t4 диоды открыты. При наличии
С-фильтра диод переходит в режим прерывистого тока, следовательно, режим диода в прямом направлении становится более напряженным, особенно в момент включения, когда конденсатор еще не заряжен: за короткий промежуток времени (с t3 по t4) ток через диод должен успеть достичь максимального значения и уменьшиться до нуля.
Емкость конденсатора фильтра выбирается из условия, чтобы ее сопротивление по переменной составляющей тока было значительно меньше сопротивления нагрузки (хотя бы в 5–10 раз).
Заряд, который получает конденсатор за время t1 t2, t3 t4,

а) б)
Рис. 1.12. ДВП с простым С-фильторм: а схема ДПВ, б временная диаграмма напряжения на нагрузке Uн = f(t)
Заряд, который получает конденсатор за время t1 t2, t3 t4,
Заряд, который конденсатор теряет за время t2 t3, t4...,
Отрезок времени, на котором происходит разряд конденсатора, оказывается близким к половине периода входного напряжения выпрямителя.
По условию стационарности процесса заряда и разряда ( =
)
откуда
где р = RнС постоянная времени разряда конденсатора фильтра.
Постоянная составляющая выходного напряжения легко может быть определена из временной диаграммы выходного напряжения (рис. 1.12, б)
Окончательно среднее значение выпрямленного напряжения