Teory (722476), страница 2
Текст из файла (страница 2)
С увеличением приложенного напряжения скорость электрона увеличивается, растет число соударений его с атомами в узлах решетки (ударная ионизация), что приводит к появлению новых носителей заряда. Увеличение числа зарядов приводит к увеличению тока неосновных носителей, температура перехода увеличивается, а это, в свою очередь, приводит к нарушению ковалентных связей и росту носителей. Процесс может принять лавинообразный характер и привести к пробою p-n-перехода (рис. 1.1). Различают следующие виды пробоев:
туннельный (при напряженности поля перехода свыше 106 В/см, до точки «а»);
электрический (вызван ударной ионизацией, после точки «а»), этот тип пробоя иногда называют лавинным, при этом в переходе идут обратимые процессы и после снятия обратного напряжения он восстанавливает свои рабочие свойства. При электрическом пробое нарастание тока почти не вызывает изменения напряжения, что позволило использовать эту особенность характеристики для стабилизации напряжения;
Рис. 1.1. ВАХ реального электронно-дырочного p-n-перехода
Вывод. Анализируя прямую и обратные ветви вольтамперной характеристики, приходим к выводу, что p-n-переход хорошо проводит ток в прямосмещенном состоянии и очень плохо в обратносмещенном, следовательно, p-n-переход имеет вентильные свойства, поэтому его можно использовать для преобразования переменного напряжения в постоянное, например, в выпрямительных устройствах в блоках питания.
1.2.1. Температурные свойства p-n-перехода
Уравнение (1.1) содержит температурно-зависимые параметры I0 и t.
I0 тепловой ток, или ток насыщения. Для идеального перехода I0 определяет величину обратного тока, а в реальных переходах I0 намного меньше обратного тока. Ток Iо сильно зависит от температуры (рис. 1.1): даже незначительные изменения температуры приводят к изменению Iо на
несколько порядков.
Максимально допустимое увеличение обратного тока диода определяет максимально допустимую температуру для него, которая составляет
80100 оС для германиевых диодов и 150200 оС для кремниевых.
Минимально допустимая температура для диодов обычно лежит в пределах от 60 до 70оС.
У германиевых переходов ток I0 на шесть порядков больше, чем у кремниевых, поэтому при одинаковых условиях у них прямые напряжения на
0,35 В меньше и в зависимости от режима составляют 0,250,15 В (напряжение отпирания у германиевых переходов при повышении температуры вырождается почти в "0").
На рис. 1.1 прямая ветвь характеристики, снятая при 70 оС, сместилась влево: с повышением температуры вступает в силу собственная проводимость полупроводника, число носителей увеличивается, так как усиливается процесс термогенерации. Обратная же ветвь ВАХ (рис. 1.1) смещается вправо, то есть с повышением температуры до +70 оС электрический пробой в переходе наступает раньше, чем при температуре +20 оС. При увеличении обратного напряжения к тепловому току добавляется ток термогенерации. В сумме эти два тока образуют через обратносмещенный переход обратный ток Iобр. При изменении температуры новое значение обратного тока можно оп-
ределить из соотношения
где Iобр.20 оС значение обратного тока при температуре не выше 27 оС (берется из справочной литературы);
А коэффициент материала, из которого выполнен полупроводниковый прибор (Агермания = 2, Акремния = 2,5);
t температурный потенциал, который при комнатной температуре равен 0,025 В, а при другой температуре t можно определить по формуле
Таким образом, при увеличении температуры обратный ток насыщения увеличивается примерно в два раза у германиевых и в два с половиной раза у кремниевых диодов (1.5).
1.2.2. Частотные и импульсные свойства p-n-перехода
При воздействии на p-n-переход напряжения высокой частоты начинают проявляться инерционные свойства перехода: распределение носителей при достаточно быстрых изменениях тока или напряжения требует определенного времени. Внешнее напряжение изменяет ширину запрещенной зоны, высоту потенциального барьера, граничную концентрацию носителей (величину объемных зарядов в переходе), следовательно, p-n-переход обладает емкостью. Для p-n-перехода характерны два состояния (прямо- и обратносмещенное), поэтому эту емкость можно условно разделить на две составляющие барьерную и диффузионную. Деление емкостей на барьерную и диффузионную является чисто условным, но, учитывая тот факт, что значения их сильно отличаются, на практике понятие барьерной емкости удобнее использовать для обратносмещенного p-n-перехода, а диффузионной для прямосмещенного.
Барьерная емкость отражает перераспределение носителей в p-n-переходе, то есть эта емкость обусловлена нескомпенсированным объемным зарядом, сосредоточенным по обе стороны от границы перехода. Роль диэлектрика у барьерной емкости выполняет запрещенная зона, практически лишенная носителей. Барьерная емкость зависит от площади перехода, от концентрации примеси, от напряжения на переходе
где П площадь p-n-перехода (в зависимости от площади перехода барьерная емкость может изменяться от единиц до сотен пикофарад); диэлектрическая проницаемость полупроводникового материала; Nд концентрация примеси; U напряжение на переходе.
Значение барьерной емкости колеблется от десятков до сотен пФ. При постоянном напряжении на переходе барьерная емкость определяется отношением , а при переменном
.
О собенностью барьерной емкости является то, что она изменяется при изменении напряжения на переходе (рис. 1.2); изменение барьерной емкости при изменении напряжения может достигать десятикратной величины, то есть эта емкость нелинейна, и при увеличении обратного напряжения барьерная емкость уменьшается, так как возрастает толщина запирающего слоя (площадь p-n-перехода).
Рис. 1.2. Зависимость барьерной емкости от напряжения
В силовых полупроводниковых приборах площадь p-n-перехода делается большой, поэтому у них велика величина барьерной емкости. Такие полупроводниковые диоды называют плоскостными. Если такой прибор использовать, например, для выпрямления переменного напряжения высокой частоты в постоянное, то барьерная емкость, зашунтировав переход, нарушает его одностороннюю проводимость, то есть переход теряет выпрямительные свойства, поэтому частотный диапазон плоскостных диодов ограничивается промышленными частотами. Но барьерная емкость может быть и полезной: приборы с явно выраженными емкостными свойствами (варикапы) используются для электронной перестройки контуров.
У точечных p-n-переходов площадь перехода мала, поэтому барьерная емкость невелика и частотный диапазон гораздо шире, чем у плоскостных.
Диффузионная емкость отражает перераспределение носителей в базе
где время жизни носителей; Iпр прямой ток через диод.
Значение диффузионной емкости колеблется от сотен до тысяч пФ.
Диффузионная емкость также нелинейна и возрастает с увеличением прямого напряжения. Образование этой емкости схематично можно представить следующим образом. Эмиттером будем считать p-область, а базой n-область. Носители из эмиттера инжектируются в базу. В базе вблизи перехода происходит скопление дырок объемный положительный заряд, но в это время от источника прямого напряжения в n-область поступают электроны, и в этой облаcти, ближе к внешнему выводу, скапливается отрицательный объемный заряд. Таким образом, в n-области наблюдается образование двух разноименных зарядов "+Qдиф" и "Qдиф". При постоянном напряжении эта емкость рассматривается как отношение абсолютных значений заряда и контактной разности потенциалов (прямого напряжения)
а при переменном
Так как вольтамперная характеристика перехода нелинейна, то с увеличением внешнего напряжения прямой ток растет быстрее, чем прямое напряжение на переходе, поэтому и заряд "Qдиф" растет быстрее, чем прямое напряжение, и диффузионная емкость тоже увеличивается.
Диффузионная емкость является причиной инерционности полупроводниковых приборов при работе в диапазоне высоких частот и в режиме ключа, так как процесс накопления и особенно рассасывания объемного заряда требует затраты определенного времени.
На рис. 1.3, а, б и рис. 1.4, а, б даны упрощенные эквивалентные схемы полупроводникового перехода (простейшего диода) на низких и высоких частотах.
а) б)
Рис. 1.3. Эквивалентные схемы перехода на низких частотах а для диффузионной емкости (Сдиф) б для барьерной емкости (Сбар).
Сопротивление емкости в общем случае
где rp-n сопротивление прямосмещенного p-n-перехода; rобр сопротивление обратносмещенного p-n-перехода (rобл< rпр<< rобр); rобл суммарное сопротивление n- и p-областей и контактов этих областей с выводами.

а) б)
Рис. 1.4. Эквивалентные схемы перехода на высоких частотах а для диффузионной емкости (Сдиф) б для барьерной емкости (Сбар).
Диффузионная емкость значительно больше барьерной, но использовать ее для практических целей нельзя, так как она зашунтирована малым сопротивлением прямосмещенного p-n-перехода.
Импульсные диоды используют в качестве ключевых элементов в устройствах с микросекундной и наносекундной длительностью импульсов
(рис. 1.5).
а) б)
Рис. 1.5. Диод в импульсном режиме: а схема простейшего ключа;
б временные диаграммы входного напряжения и тока через диод
1.3. Переход металлполупроводник
Эффект, полученный на основе такого контакта получил название эффекта Шоттки. Сущность эффекта заключается в следующем.