125276 (717566), страница 3
Текст из файла (страница 3)
Nмод=Nмех
3.3.2 Определение суммарного приведенного момента инерции
Метод приведения масс и моментов инерции основан на равенстве кинетической энергии звена приведения динамической модели и кинетической энергии реального механизма в каждый момент времени.
Tмод=Tмех
,
3.4 Передаточные функции
Определение передаточных функций
Передаточные функции определяются из построения планов скоростей.
План скоростей:
План скоростей построим в вынужденном масштабе. Выберем величину отрезка
с плана скоростей равную отрезку ОА на плане механизма.
Так как
, то
. Таким образом масштаб построения планов скоростей определяется по следующей формуле:
и
Скорость центров тяжести второго звена S3 определятся методом подобия
.
При построении плана скоростей скорость точки B1 будет направлена перпендикулярно звену АB, относительная скорость точки В2 будет направлена по 3 звену, скорость переносного движения точки В2 будет направлена перпендикулярно звену СВ, также направлена и скорость точки D. Скорость точки Е направлена по оси OX
Определение
Таким образом, для нахождения передаточной функции
для каждого положения механизма достаточно замерить величину отрезка
с плана скоростей, переводя через масштаб
, получим
в м. (результаты в Таблицу 4)
Определение передаточных функций
Для плана скоростей в каждом положении механизма замеряем отрезок
, и делим его на длину звена СВ. (результаты см. Таблицу 4)
Таблица 4
Значения передаточных функций.
| Передаточная функция | Положения механизма | |||||||||||||
| 0 | 1 | 2 | 2' | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10' | 10 | 11 | |
| | -0.387 | -0.242 | -0.049 | 0 | 0.077 | 0.139 | 0.172 | 0.185 | 0.176 | 0.14 | 0.062 | 0 | -0.042 | -0.242 |
|
| 0.549 | 0.355 | 0.067 | 0 | 0.112 | 0.205 | 0.249 | 0.262 | 0.249 | 0.205 | 0.112 | 0 | 0.067 | 0.355 |
3.5 Построение графика приведенного момента сил полезного сопротивления
Рассчитаем силы полезного сопротивления:
На рабочем ходу: звено 5 двигается вместе с изделием, значит
На холостом ходу:
Рассчитаем
для положения 1:
Остальные значения
запишем в таблицу 5
Таблица 5
Значения приведённых моментов.
| Приведённый момент | Положения механизма | |||||||||||||
| 0 | 1 | 2 | 2' | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10' | 10 | 11 | |
|
| -29.749 | -18.572 | -3.76 | 0 | -9.593 | -17.427 | -21.414 | -23.033 | -21.998 | -17.429 | -7.79 | 0 | -3.235 | -18.618 |
Далее строим график изменения момента
Выбираем масштаб
Вычислим масштаб
:
3.6 Построение графика работ.
Проинтегрируем график
и получим график
. Его масштаб определяется по формуле:
,
где
- масштаб работы,
и
– масштабы по осям координат графика приведенного движущего момента,
- отрезок интегрирования.
В данном случае приведенный момент
равен действительному моменту
, т. к. последний приложен к входящему звену и в первом приближении его можно считать постоянным. Однако величина
определяется из условия, что
. Конечная ордината графика
должна быть равна
для установившегося режима движения и с учетом того, что
, строится график
в виде наклонной прямой линии. Дальнейшим графическим дифференцированием графика
определяем величину
.
, с другой стороны:
Погрешность:
Сложим график работ движущей силы
за цикл и работы сил сопротивления
за цикл, получим график суммарной работы.
3.7 Определение приведенного момента инерции второй группы звеньев
Подсчитаем значение
для механизма в положении 0:
Значения
для всех остальных положений механизма сведем в таблицу 6:
Таблица 6
Значения моментов инерции.
| Момент инерции | Положения механизма | |||||||||||||
| 0 | 1 | 2 | 2' | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 10' | 11 | |
| I3 | 0.21 | 0.087 | 0.003 | 0 | 0.009 | 0.029 | 0.043 | 0.048 | 0.043 | 0.029 | 0.009 | 0.003 | 0 | 0.087 |
| I5 | 5.102 | 1.988 | 0.082 | 0 | 0.2 | 0.663 | 1.001 | 1.158 | 1.056 | 0.663 | 0.132 | 0.06 | 0 | 1.998 |
| I_IIгр | 5.312 | 2.076 | 0.085 | 0 | 0.21 | 0.692 | 1.044 | 1.206 | 1.099 | 0.692 | 0.141 | 0.063 | 0 | 2.086 |
По данным таблицы строим график
в масштабе
:
График
может быть приближенно принят за график кинетической энергии второй группы звеньев
. Действительно:
.
Закон изменения
еще не известен. Поэтому для определения
приближенно принимаем
, что возможно, т.к. величина коэффициента неравномерности
величина малая и, тогда величину
можно считать пропорциональной
, а построенную кривую можно принять за приближенную кривую
. Масштаб графика
:
3.8 Построение приближенного графика
Известно, что
. С другой стороны
, т.е. кинетическая энергия механизма отличается от
на некоторую постоянную величину
. Поэтому ранее построенный график
можно принять за график
относительно оси
, отстоящей от оси
на величину
. следовательно для построения кривой
необходимо из ординат кривой
в каждом положении механизма вычесть ординаты графика
, взятые в масштабе
, в каком построена кривая
:
.
Полученная кривая
приближенная, т.к. построена вычитанием из точной кривой
приближенных значений
.
На кривой
находят
и
, и определяют максимальное изменение кинетической энергии I группы звеньев за период одного цикла:
, откуда
3.9 Определение закона движения начального звена механизма
Максимальному значению
соответствует
, а
соответствует
, т.к.
. Поэтому
будет соответствовать
в масштабе
. Чтобы определить график
, необходимо найти положение оси абсцисс
. Для этого через середину отрезка
, проводят линию, которая является средней угловой скоростью
. Рассчитаем графическую величину
. Определим коэффициент неравномерности вращения :
Определим погрешность
3.10 Геометрический расчет маховика.
Определим момент инерции дополнительной маховой массы
предположим что
, тогда
м
Чертим маховик в масштабе
Вывод:
-
Провели геометрический синтез механизма, определили:
-
Создали динамическую модель, с параметрами:
-
Подобраны размеры маховика:
-
Создан закон движения ω(φ)
Определим угловую скорость и ускорение, при φ=60О:
ω1= ωср+Δy/μω=1.88+1.018 /89.98= 1,891 c-1
ε1= ω1*tgψ*μφ/μω=1.891*tg(18.63)*19.1/89.98= 0,135c-2
















