122524 (716909), страница 6
Текст из файла (страница 6)
б- эпюра моментов от сил в вертикальной плоскости;
в- силы, действующие на вал в горизонтальной плоскости;
г- эпюра моментов от сил в горизонтальной плоскости;
д- эпюра суммарных изгибающих моментов;
е- эпюра крутящего момента.
4.8 Расчет оси промежуточной передачи
Расчетная схема оси представлена на рисунке 4.8
Рисунок 4.8- Расчетная схема оси
а- силы, действующие на ось в вертикальной плоскости;
б- эпюра моментов от сил в вертикальной плоскости.
4.8.1 Определение реакций опор
Расчет ведём только в вертикальной плоскости, так как радиальные силы равны и направлены друг против друга.
(4.84)
4.8.2 Определение изгибающего момента в сечении 1
(4.85)
где l- длина оси, принимаем l=60 мм.
4.8.3 Определение диаметра оси
(4.86)
Принимаем d=20 мм.
4.9 Выбор подшипников для валов синхронизирующего редуктора
4.9.1 Подбор подшипников для вала-шестерни
Исходные данные:
диаметр вала в месте посадки подшипника- d=40 мм;
частота вращения вала- n=580,3 мин –1;
суммарные реакции на опорах: FA=RA=4611,1 Н, FB=RB=1719,6 Н (см. п. 4.7.3.5);
осевая нагрузка- FA=499,5 Н;
долговечность подшипников- LH=8000…12000 часов.
Схема нагружения вала представлена на рисунке 4.9.
Рисунок 4.9- Схема нагружения вала-шестерни
4.9.1.1 Подбор типоразмера подшипника
Выбор подшипников и их расчет ведём по методике изложенной в [13].
Так как осевая нагрузка значительно меньше радиальной, выбираем радиальные шарикоподшипники средней серии № 408, у которых динамическая грузоподъемность- С=48500 Н, статистическая грузоподъёмность - С0=36300 Н.
4.9.1.2 Вычисляем параметр осевого нагружения
(4.87)
По таблице 2.6 [13] находим l=0,19.
4.9.1.3 Определяем коэффициент радиальной и осевой нагрузок
Подбор ведём по более нагруженной опоре, то есть А.
(4.88)
где V- коэффициент вращения, принимаем V=1,0.
0,108 < l = 0,19, тогда по табл. 2.6 х=1,0; у=0.
4.9.1.4 Определяем эквивалентную нагрузку
(4.89)
где кδ- коэффициент безопасности, принимаем кδ=1,3, из таблицы 2.7 [13];
кт- температурный коэффициент, принимаем кт=1,0 [13].
4.9.1.5 Определяем долговечность подшипника
(4.90)
Полученная долговечность подшипника соответствует рекомендуемым значениям.
4.9.1.6 Проверка подшипников по статической грузоподъёмности
(4.91)
где Р0- эквивалентная статическая нагрузка, Н;
хо,уо- коэффициенты радиальной и осевой статических нагрузок соответственно, принимаем хо=0,6, уо=0,5 из табл. 2.6 [13].
С учетом двухкратной перегрузки:
Ро < Со=36300 Н – условие выполняется.
4.9.2 Подбор подшипников для второго вала
Исходные данные:
диаметр вала в месте посадки подшипника- d=35 мм;
частота вращения вала- n=331,6 мин –1;
суммарные реакции на опорах: FA=RA=3568,5 Н, FB=RB=4729,4 Н (см. п. 4.7.4.5);
осевая нагрузка- FA=874,2 Н;
долговечность подшипников- LH=8000…12000 часов.
Схема нагружения вала представлена на рисунке 4.10.
Рисунок 4.10- Схема нагружения вала
4.9.2.1 Подбор типоразмера подшипника
Выбор подшипников и их расчет ведём по методике изложенной в [13].
Учитывая большую осевую нагрузку, назначаем радиально-упорный шарикоподшипник средней серии № 36307, для которого динамическая грузоподъемность - С=35500 Н, статистическая грузоподъёмность - С0=27400 Н.
4.9.2.2 Вычисляем параметр осевого нагружения
Находим отношение:
(4.92)
По таблице 2.6 [13] при FA/C0=0,032 интерполяцией находим l=0,226.
4.9.2.3 Определяем осевые составляющие от радиальных нагрузок
(4.93)
(4.94)
.
4.9.2.4 Вычисляем результирующие осевые нагрузки
Принимаем схему установки подшипников ‘враспор’, получаем направление осевой составляющей правого подшипника, совпадающее с направлением внешней осевой нагрузки. Поэтому правая опора будет иметь номер 1, а левая - номер 2 (смотреть рисунок 4.11).
Тогда S1=SB=1068,8 H; S2=SA=806,5 H.
Поскольку S1 > S2 и Fa > 0, тогда по табл. 2.8 [13]:
(4.95)
.
Рисунок 4.11- Схема установки подшипников “враспор”
4.9.2.5 Уточнение параметров осевого нагружения
Находим отношение:
(4.96)
По таблице 2.6 [13] при FA2/C0=0,071 интерполяцией находим l=0,39.
4.9.2.6 Определяем коэффициент радиальной и осевой нагрузок
(4.97)
где V- коэффициент вращения, принимаем V=1,0.
0,22 < l = 0,39, тогда по таблице 2.6 х1=1,0; у1=0.
0,54 > l = 0,39, тогда по табл. 2.6 х2=0,45; у2=1,0015.
4.9.2.7 Вычисление эквивалентных нагрузок на подшипники
(4.98)
где кδ- коэффициент безопасности, принимаем кδ=1,3, табл. 2.7 [13];
кт - температурный коэффициент, принимаем кт=1,0 [13].
(4.99)
4.9.2.8 Определяем долговечность подшипника
Расчет долговечности произведём по более нагруженной опоре, то есть опоре В.
(4.100)
Полученная долговечность подшипника соответствует рекомендуемым значениям.
4.9.2.9 Проверка подшипников по статической грузоподъёмности
(4.101)
где Р0- эквивалентная статическая нагрузка, Н;
хо, уо- коэффициенты радиальной и осевой статических нагрузок соответственно, принимаем хо=0,5, уо=0,46 из табл. 2.6 [13].
С учетом двухкратной перегрузки:
Ро < Со=27400 Н – условие выполняется.
4.9.3 Выбор подшипника скольжения для промежуточной шестерни цилиндрической передачи
В качестве подшипника скольжения выбираем бронзовую втулку. Материал втулки Бр.ОФ 10-1 [18].
4.10 Расчет шлицевых соединений
4.10.1 Расчет шлицевого соединения первого вала синхронизирующего редуктора
Принимаем шлицевое соединение по ГОСТ 1139-80 [18]:
,
где Z=6 – число зубьев;
d=26,мм – внутренний диаметр вала;
D=30,мм – наружный диаметр вала;
b=6,мм – ширина зуба.
Расчет шлицевого соединения по напряжению смятия [18]:
, (4.102)
где σсм. – расчетное напряжения смятия зубьев, МПа;
Т – крутящий момент на валу, Т=106,5 Н.м;
[σсм.] – допускаемое напряжение смятия зубьев, принимаем [σсм.]=30,МПа;
h – рабочая высота прямобочных зубьев, мм.
(4.103)
где f – размер фаски, f=0,4 мм [18].
ψ – коэффициент, учитывающий неравномерность распределения нагрузки между шлицами, принимаем ψ=0,75 [18];
dср. – средний диаметр шлицевого соединения.
(4.104)
l – длина поверхности контактов шлицев, l=95 мм.
σсм. < [σсм.]=30 МПа – условие выполняется.
5 РАСЧЕТ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ОТ ВНЕДРЕНИЯ ЛЕСОТРАНСПОРТНОЙ МАШИНЫ
5.1 Экономическое обоснование расчёта
Опыт создания и применения модификационных колёсных тракторов показывает следующее:
-
модификационные колёсные трактора могут широко использоваться в качестве базы для различных лесозаготовительных машин, большой дорожный просвет и шины низкого давления этих модификаций обеспечивают устойчивую работу на различных грунтовых покрытиях, и сохранение подроста;
-
ведущие колёса большого диаметра, шарнирно-сочленёная рама, значительный дорожный просвет обеспечивают модификациям более высокую проходимость по сравнению с базовыми сельскохозяйственными тракторами;
-
рациональная компоновка и лучшее использование тяговых качеств модифицированных тракторов позволяет увеличить полезную рейсовую нагрузку, а, следовательно, и сменную производительность;
-
высокая степень унификации модифицированных тракторов с базовыми тракторами позволяет организовать их производство без значительных капитальных затрат.[3]
Расчет сводится к сравнению экономических показателей лесотранспортной машины на базе трактора Т-25А1 с базовым сельскохозяйственным трактором Т-25А1.
Лесотранспортная машина может использоваться для перевозки различных лесохозяйственных грузов, транспортирования осмола, технологического сырья, дров, отходов лесозаготовок и других грузов.
Расчет приведён на примере использования лесотранспортной машины для транспортировки технологической щепы. В качестве базового варианта используется трактор Т-25А1 с полуприцепом.
Исходные данные:
Место расположения………………………………Архангельск
Продолжительность рабочей смены, ч …………………… 8
Коэффициент использования рабочего времени……… 0,86
Тарифная ставка тракториста, руб. ……………………… 3,5
Премии, % ……………………………………………………… 30
Дополнительная заработная плата, % ……………………..20
Число дней в году…………………………………………… 250
Среднее расстояние вывозки, км…………………………… 5
Нагрузка на рейс, м
-
базовой машины ………………………………………… 2
-
внедряемой машины ……………………………………. 3
5.2 Расчет экономических показателей
Экономический эффект будет складываться из:
-
экономии на заработной плате, в результате роста годовой производительности;
-
экономии на затратах по содержанию машины.
5.2.1 Расчет экономии затрат по заработной плате
Определение сменной производительности [15]:















