kursovik (708960), страница 2

Файл №708960 kursovik (Статистическая обработка экспериментальных данных) 2 страницаkursovik (708960) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

при n = 23;

Сравниваем с : . Отбрасываем измерение №11 и повторяем вычисления.

(8)

(9)

Таблица 4

№ из-мерения

Результат измере-ния (Qi)

№ из-мерения

Результат измере-ния (Qi)

1

482

-1,0909

1,1901

12

483

-0,0909

0,0083

2

485

1,9091

3,6446

13

483

-0,0909

0,0083

3

486

2,9091

8,4628

14

483

-0,0909

0,0083

4

486

2,9091

8,4628

15

483

-0,0909

0,0083

5

483

-0,0909

0,0083

16

484

0,9091

0,8264

6

483

-0,0909

0,0083

17

484

0,9091

0,8264

7

483

-0,0909

0,0083

18

483

-0,0909

0,0083

8

483

-0,0909

0,0083

19

482

-1,0909

1,1901

9

481

-2,0909

4,3719

20

481

-2,0909

4,3719

10

480

-3,0909

9,5537

21

481

-2,0909

4,3719

11

486

2,9091

8,4628

22

483

-0,0909

0,0083

Σ

0

55,8182

при n = 22;

Сравниваем с . Так как , то результат измерения №10 не является ошибочным и окончательно остается 22 измерения, т.е. n = 22.

3. Проверяем гипотезу о нормальности распределения оставшихся результатов измерений.

– Применяем критерий 1, вычисляем отношение

(10)

– задаемся доверительной вероятностью P1 = 0,99 и для уровня значимости q1 = 1 – P1 по таблице П7 определяем квантили распределения и , , для n = 22.

– сравниваем с и : , значит гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными, т.е. результаты наблюдений можно считать распределенными нормально.

Так как n > 15, применяем критерий 2.

– задаемся доверительной вероятностью P2 = 0,98 и для уровня значимости q2 = 1 – P2 с учетом n = 22 определяем по таблице П8 значения m и P*. m = 2; P* = 0,97.

– для вероятности P* из таблиц для интегральной функции нормированного нормального распределения Ф(t) определяем значение t:

; (11)

при Ф(t) = 0,485 t = 2,17;

Рассчитываем E:

; (12)

;

Согласно критерию 2 результаты наблюдений принадлежат нормальному закону распределения, если не более m разностей превысили E. Из таблицы 4 видно, что ни одна разность не превышает E = 3,4566. Следовательно, гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными.

Соблюдаются оба критерия, значит закон можно признать нормальным с вероятностью , .

4. Определяем стандартное отклонение среднего арифметического.

Так как закон распределения вероятности результата измерений признан нормальным, то стандартное отклонение определяем как:

(13)

5. Определяем доверительный интервал.

Закон распределения вероятности результата измерений признан нормальным, поэтому доверительный интервал для заданной доверительной вероятности P определяется из распределения Стьюдента.

P = 0,98; ; t = 2,33;

; (14)

Значение Q будет находиться в пределах:

3. Обработка результатов нескольких серий измерений

Условие. При многократных измерениях одной и той же величины получены две серии по 12 (nj) результатов измерений в каждой. Эти результаты после внесения поправок представлены в таблице 5. Вычислить результат многократных измерений.

Исходные данные:

Таблица 5

Серия 1

Серия 2

№ изме-рения

Результат измерения

№ изме-рения

Результат измерения

№ изме-рения

Результат измерения

№ изме-рения

Результат измерения

1

482

7

483

1

483

7

483

2

485

8

483

2

483

8

482

3

486

9

481

3

483

9

481

4

486

10

480

4

483

10

481

5

483

11

492

5

484

11

483

6

483

12

486

6

484

12

495

Расчет.

1. Обрабатываем экспериментальные данные по алгоритму, изложенному в п.п. 1–3 задания 2, при этом:

– определяем оценки результата измерения и среднеквадратического отклонения ;

– обнаруживаем и исключаем ошибки;

– проверяем гипотезу о нормальности распределения оставшихся результатов измерений.

(15)


(16)

Таблица 6

Серия 1

Серия 2

№ из-мерения

Результат измере-ния (Q1i)

№ из-мерения

Результат измере-ния (Q2i)

1

482

-2,1667

4,6944

1

483

-0,7500

0,5625

2

485

0,8333

0,6944

2

483

-0,7500

0,5625

3

486

1,8333

3,3611

3

483

-0,7500

0,5625

4

486

1,8333

3,3611

4

483

-0,7500

0,5625

5

483

-1,1667

1,3611

5

484

0,2500

0,0625

6

483

-1,1667

1,3611

6

484

0,2500

0,0625

7

483

-1,1667

1,3611

7

483

-0,7500

0,5625

8

483

-1,1667

1,3611

8

482

-1,7500

3,0625

9

481

-3,1667

10,0278

9

481

-2,7500

7,5625

10

480

-4,1667

17,3611

10

481

-2,7500

7,5625

11

492

7,8333

61,3611

11

483

-0,7500

0,5625

12

486

1,8333

3,3611

12

495

11,2500

126,5625

Σ

0

109,6667

Σ

0

148,2500

;

(17)

Характеристики

Тип файла
Документ
Размер
851,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее