mu1 (708449), страница 4
Текст из файла (страница 4)
4. Выбрать двигатель, для которого
Предпочтение следует отдавать быстроходным двигателям с номинальной часто-той вращения ротора 6000 об/мин и более.
5. Определить оптимальное передаточное отношение редуктора
В.- Для систем, отрабатывающих гармонический сигнал вида θ = θ0∙sinωat.
Заданы: θ0 - амплитуда сигнала, рад; круговая частота,ωa= 2π/t, рад/с; Iн, кг∙м2;
Тнс, Н∙м; γ = 20...10, ηр.
Требование: применять двигатели с линейной или с линеаризуемой механической характеристикой (см. таблица 2.1, группа Г).
Методика выбора электродвигателя.
Определить характеристики управления по выходу:
Максимальная расчетная угловая скорость нагрузки:
Нормальное угловое ускорение нагрузки:
Нормальная угловая скорость нагрузки:
2. Определить соотношение нагрузок:
Если заданный статический момент Тнс больше динамического (правая часть не-равенства (2.31)), выбор параметров привода выполняют по пп.3-5, если меньше - по пп.6…9
3. Определить необходимые динамические характеристики двигателя
(2.32)
4. Выбрать двигатель, для которого
5. Определить оптимальное значение передаточного отношения редуктора:
6. Определить необходимую мощность двигателя, Вт:
7. Выбрать двигатель, у которого Nном≥ Nном 0.
8. Определить оптимальное по быстродействию передаточное отношение редук-тора:
9. Проверить условие обеспечения заданной максимальной угловой скорости:
Если условие не выполняется, передаточное отношение редуктора
Запас по скорости следует принимать тем больше, чем больше относительное зна-чение статической нагрузки.
Н
а рисунке 2.2 изображена нагрузочная характеристика привода
в поле механической характеристики двигателя
при гармоническом входном сигнале. ω
ір ∙ωнmax
ω A= ір ∙ωн A
ТТ T
Рисунок 2.2
По относительному расположению значений
и
можно определить необходимое значение коэффициента запаса:
3. ОПРЕДЕЛЕНИЕ ПЕРЕДАТОЧНЫХ ОТНОШЕНИЙ В ЗУБЧАТЫХ МЕХАНИЗМАХ. С ЦИЛИНДРИЧЕСКИМИ И КОНИЧЕСКИМИ КОЛЕСАМИ.
3.1. Общее передаточное отношение механизма определяется по формуле:
где
- общее передаточное отношение;
nдв - частота вращения вала заданного или выбранного электродвигателя, об/мин,
nвых - частота вращение выходного вала механизма, об/мин.
Значение nвых определяется на основании технического задания. При этом возмож-ны следующие варианты:
1. Значение nвых задано непосредственно в техническом задании.
2. Задана угловая скорость выходного ωвых рад/с:
3.Задано время движения выходного вала tp, с. При отом угол поворота выходного вала
, либо задан либо может быть назначен из конструктивных соображений. Тогда
4. Задан закон движения выходного вала
:
5. На выходе механизма осуществляется преобразование вращательного движения в поступательное реечной парой или парой с гибким звеном (лентой, тросом, цепью):
где v -линейная скорость выходного звена, мм/с,
dk- диаметр колеса, преобразующего вращательное движение в поступательное, мм.
6. На выходе механизма осуществляется преобразование вращательного движения в поступательное винтовой парой:
где ph- ход винтовой линии, мм.
7. На выходе механизма вращательное движение преобразуется в поступательное кулачковым механизмом:
где
- угол поворота кулачка (…˚), соответствующий времени цикла tпост ,с звена совершающего возвратно-поступательное движение.
8. На выходе механизма преобразование вращательного движения в поступатель-ное осуществляется кривошипно-шатунным механизмом:
где
- время цикла звена, совершающего возвратно-поступательное движение.
3.2. Выбор передаточных отношений ступеней в зависимости от функционального назначения механизма заключается в определении рациональных значений состав-ляющих уравнения:
где
-передаточные отношения первой и второй ступеней,
-передаточные отношения предыдущей, последующей и последней ступени соответственно.
При распределении общего передаточного отношения по ступеням в механизмах приводов, систем управления и регулирования необходимо обеспечить:
- минимальные размеры и массу механизмов, в том случае, если к ним не предъяв-ляется требование малоинерционности;
- минимальный момент инерции, приведенный к входному валу механизма.
3.3 В соответствии с функциональным назначением и условиями нагружения звеньев механизмы при распределении передаточных отношений между ступенями делятся на 5 типов:
- тип I: нереверсивные силовые зубчатые механизмы, у которых размеры зубчатой пары и долговечность определяются контактной прочностью рабочих поверхностей зубьев;
- тип 2: реверсивные силовые механизмы, у которых размеры зубчатой пары и дол-говечность определяются изгибной прочностью сердцевины зубьев;
- тип 3: малонагруженные кинематические зубчатые механизмы, размеры звеньев которых выбираются из конструктивных соображений, а напряжения в материалах нас-только малы, что на размеры колес влияния практически не оказывают;
- тип 4: реверсивные силовые малоинерционные механизмы, у которых долговеч-ность и размеры зубчатой пары определяются изгибной прочностью;
-тип 5: реверсивные малонагруженные кинематические малоинерционные зубча-тые механизмы, у которых напряжения малы и на размеры колёс влияния практически не оказывают.
-тип 6: малонагруженнный кинематический механизм с минимальной суммарной кинематической погрешностью передачи.
Формулы для определения составляющих уравнения (3.10) приведены в таблице 3.1.
Они получены из условий, что все зубчатые колеса данного механизма геометри-чески подобны, т.е. относительная ширина зубчатых венцов
одинако-ва, а числа зубьев всех ведущих колес в зубчатых парах равны.
3.4. Выбор и определение чисел зубьев зубчатых колес в ступенях производят по формуле
Z2 = Z1 ik , (3.11)
где Z1 и Z2 числа зубьев ведомого и ведущего колес зубчатой пары соответственно. Числа зубьев ведущих колёс выбирают одинаковыми во всех ступенях; по конструктив-ным соображениям, для силовых механизмов Z1=16…20, для кинематических
Z2= 18...24.
Таблица 3.1 Распределение суммарного передаточного отношения по ступеням
| Критерий | Вид механизма | ||||
| Силовой | Малонагруженный | ||||
| Количество ступеней | |||||
| задано | не задано | задано | не задано | ||
| Минимальный объем переда-чи | Не ревер сивный | i1=i2=i3=…= = ik= = i = 2,89 nопт= 0,942 lni∑ | i1 = i2 = i3 =…= in= ik = 1,895 nопт= 1,564 lni∑ | ||
| реверсивный | i1=i2=i3=…= = ik= = i = 2,414 nопт= 1,1346 lni∑ | ||||
| Минима- льный приведен-ный момент инерции передачи | Не ревер сивный | ik+1=0,854i1,2 | i1=i2=i3=…= = ik= = i = 2,176 nопт= 1,286 lni∑ | i1 = i2 = i3 = =…= in= ik = = 1,554 nопт=2,269* *lni∑ | |
| Ревер-сивный | i1=i2=i3=…= = ik= = i = 1,806 nопт= 1,692 lni∑ | ||||
| Минимальная сум-марная кинемати-ческая погрешность | ikmin= 1,202nопт=0,2*lni∑ | ||||
3.5. Допустимые отклонения передаточных отношений в механизмах.
При реализации разработанной кинематической схемы из-за дискретности значе-ний чисел зубьев, которые должны быть целыми, чаще всего приходится отклоняться от расчетных значений передаточных отношений в ступенях и значения общего переда-точного отношения механизма. Допускаемое отклонение общего передаточного отно-шения: +2%…-5 %. В кинематических механизмах отсчетных устройств погрешность общего передаточного отношения недопустима. В силовых механизмах типа 1 и 2 наи-более точно должны быть реализованы передаточные отношения последних ступеней, а в малоинерционных механизмах типа 4 и 5 - первых двух-трех ступеней.















