327815 (692376), страница 4
Текст из файла (страница 4)
; (4.8)
где: - радиус витка;
- диаметр проволоки.
Принимаем: =1,2;
=0,05м;
=0,015м
Подставив данные значения в формулу (4.8) получим:
Прогиб определяется по формуле:
;(4.9)
где - число рабочих витков;
- модуль упругости материала.
Принимаем: =13;
.
Подставив данные значения в формулу (4.9) получим:
Для задней подвески упругим элементом являются симметричные рессоры.
Суммарный момент инерции поперечного сечения определяется по формуле:
(4.10)
где: b - ширина листа рессоры;
h - толщина листа рессоры;
n - количество листов в рессоре.
Принимаем: b=0,042м;h=0,0065м;n=6.
Подставив данные значения в формулу (4.10) получим:
Жесткость рессоры определяется по формуле:
;(4.11)
где: - коэффициент формы;
- модуль продольной упругости;
- длина коренного листа рессоры.
Принимаем: =1,35;
=210 ГПа;
=0,6м;
=0,3м
Подставив данные значения в формулу (4.11) получим:
Стрела прогиба определяется по формуле:
(4.12)
Подставив значения, получим:
Напряжения по статическому прогибу определяется по формуле:
(4.13)
где: - момент сопротивления к-го листа;
- момент инерции поперечного сечения к-го листа.
Момент сопротивления листа рессоры определяется по формуле:
(4.14)
Момент инерции поперечного сечения листа рессоры определяется по формуле:
(4.15)
Принимаем: b=0,042м;h=0,0065м.
Подставив данные значения в формулы (4.14) и (4.15) получим:
Подставив данные значения в формулу (4.13) получим:
Напряжения по нагрузке определяется по формуле:
(4.16)
Подставив значения, получим:
При передаче через рессору тягового или тормозного усилия в коренном листе возникают следующие напряжения:
При торможении:
(4.17)
При разгоне:
(4.18)
Подставив значения в формулы (4.17) и (4.18) получим:
Так же при передаче через рессору тягового или тормозного усилия и реактивного момента в корневом листе возникают дополнительные напряжения:
(4.19)
(4.20)
Подставив значения, получим:
Суммарное напряжение коренного листа определяем по формуле:
(4.21)
где
Подставив значения, получим:
При передаче тягового усилия напряжение будет определятся по формуле:
(4.22)
Подставив значения, получим:
4.3 Расчёт направляющих элементов
Прямолинейное движение
Нормальные реакции на колесах за вычетом нагрузки на колесо определяются по формуле:
(4.23)
где k – коэффициент перераспределения нагрузки.
Подставив значения, получим:
Тормозные силы определяются по формуле:
(4.24)
Подставив значения, получим:
Тормозной момент определяется по формуле:
(4.25)
Подставив значения, получим:
Силы от пружины определяются по формуле:
(4.26)
Подставив значения, получим:
Боковые силы и
равны нулю.
Занос
Нормальные реакции на колесах определяются по формулам:
(4.27)
(4.28)
где: - высота центра тяжести;
- ширина колеи.
Принимаем: =0,65м;
=1,27м;
Подставив значения, получим:
Боковые силы определяются по формуле:
(4.29)
(4.30)
Подставив значения, получим:
Силы от рессор определяются по формуле:
(4.31)
(4.32)
Подставив значения, получим:
Продольные силы равны нулю.
4.4 Расчет демпфирующих элементов
Направляющее устройство нагружается только вертикальными силами, значения которых удовлетворяют выражению:
(4.33)
Их величина должна быть увеличена в К раз.
К=1,75 - коэффициент динамичности.
Для гашения вертикальных и продольных угловых колебаний кузова, а также вертикальных колебаний колес, которые возникают под действием дорожных неровностей и неуравновешенности колес, применяют специальные устройства – амортизаторы. Наибольшее распространение получили телескопические амортизаторы двухстороннего действия с несимметричной характеристикой ( ko > kс ) и разгрузочными клапанами.
Уменьшение сопротивления при ходе сжатия связано со стремлением ограничить силу, передающуюся через амортизатор кузову при наезде колеса на препятствие. Соотношение между коэффициентами сжатия и отбоя:
Наиболее полно требованиям, предъявляемых к подвески автомобиля, удовлетворяют гидравлические рычажные и телескопические амортизаторы.
Требования, предъявляемые к амортизаторам:
- увеличение затухания с ростом скорости колебаний, во избежание раскачивания кузова колес;
- малые затухания колебаний при движении автомобиля по неровностям малых размеров;
- минимальная нагрузка от амортизатора на кузов;
- стабильность действия при движении в различных условиях и при разной температуре воздуха.
Рисунок 2 – Рабочий процесс амортизатора
a - плавное сжатие; б - резкое сжатие; в - плавная отдача; г - резкая отдача; 1 - перепускной клапан сжатия; 2 - калиброванное отверстие; 3 - разгрузочный клапан сжатия; 4 - диск; 5 - пружина.
Рисунок 3 - Скоростная характеристика амортизатора
Наибольшее распространение имеют амортизаторы двустороннего действия с несимметричной характеристикой разгрузочного клапана - коэффициент сопротивления при сжатии меньше коэффициента отдачи, чтобы при наезде колеса на неровность и быстром сжатии амортизатора не передавались большие усилия на кузов.
Разгрузочные клапаны открываются, когда скорость колебания кузова значительно увеличивается; таким образом, нагрузки на кузов ограничиваются.
Давление жидкости в телескопическом амортизаторе в 4…5 раз меньше, чем в рычажном. Рабочий процесс телескопического амортизатора показан на рисунке 2
При плавном сжатии перепускной клапан 1 под давлением перепускает жидкость из нижнего в верхний объем, часть жидкости перетекает в компенсационную камеру и сжимает там воздух. Сила сопротивлению сжатия (где
- площадь штока).
При резком сжатии давление возрастает и открывается разгрузочный клапан - 3, увеличение силы сопротивления замедляется.
При отдаче поршень перемещается вверх, клапан 1 закрывается, жидкость перетекает через калибровочное отверстие 4, растет давление жидкости над поршнем. Часть штока выводится из рабочего цилиндра, недостаток жидкости под поршнем пополняется из компенсационной камеры. Сила сопротивления при отдаче
При резкой отдаче давление жидкости преодолевает силу пружины 5 разгрузочного клапана отдачи, диски 4 освобождают проход жидкости.
Схема установки амортизатора определяется компоновочными соображениями; желательно располагать амортизатор возможно ближе к колесу, широко распространено расположение амортизатора внутри пружины подвески.
Заключение
В данном курсовом проекте был произведен анализ агрегатов систем автомобиля (сцепление, подвеска) и механизмов управления автомобилем (рулевое управление, тормозная система). Также был выполнен прочностной и кинематический расчет деталей механизмов автомобиля.
Напряжения среза и смятия шлицев ступицы ведомого диска находятся в заданных пределах.
Усилие на рулевом колесе составляет 145 Н и не выходит за пределы значения, при котором в конструкцию рулевого управления требуется включения усилителя. Также выяснено, что при расчете рулевого механизма и рулевого привода изгибные и контактные напряжения зубьев рулевого механизма, напряжения смятия и изгиба шарового пальца и напряжения среза не превышают допустимых значений.
Расчеты рулевого и тормозного управлений показали наличие запаса прочности в 20 - 30%. Это полностью отвечает действующему закону по обеспечению безопасности дорожного движения РФ.
При увеличении температуры тормозного механизма ухудшаются тормозные свойства автомобиля, что может привести к тяжелым последствиям. При расчете тормозных механизмов было установлено, что при торможении на небольших скоростях они не перегреваются.
Значения низкой частоты колебаний подрессоренных масс лежат в допустимых пределах; значения высокой частоты колебаний автомобиля находятся в допустимых пределах.
Список литературы
-
Автомобили: Метод. указания / Авт. – сост. А.М. Абрамов; НовГУ им. Ярослава Мудрого. — Великий Новгород, 2007. — с. 45
-
Вахламов В.К. Автомобили. Конструкция и элементы расчета. – М.: Изд. центр «Академия», 2006. - 480 с.
-
Осепчугов В.В., Фрумкин А.К. Автомобиль: Анализ конструкций, элементы расчета: Учебник для студентов ВУЗов по специальности «Автомобили и автомобильное хозяйство». – М.:Машиностроение, 1989. – 304 с.: ил.
Приложение
Формат | Зона | Поз. | ОБОЗНАЧЕНИЕ | НАИМЕНОВАНИЕ | Кол. | Примечание | ||||||||||||
Документация общая | ||||||||||||||||||
Вновь разработанная | ||||||||||||||||||
А4 | Задание на курсовой проект | 1 | Альбом | |||||||||||||||
А4 | НУАТ 459323.001 ПЗ | Пояснительная записка | 1 | Альбом | ||||||||||||||
Документация по сборочным | ||||||||||||||||||
единицам | ||||||||||||||||||
А2 | НУАТ 454212.001 СБ | Сцепление | 1 | Альбом | ||||||||||||||
А2 | НУАТ 452964.001 СБ | Подвеска задняя | 1 | Альбом | ||||||||||||||
А2 | НУАТ 453463.001 СБ | Механизм рулевой | 1 | Альбом | ||||||||||||||
А3 | НУАТ 452483.001 СБ | Задний тормозной механизм | 1 | Альбом | ||||||||||||||
Документация по деталям | ||||||||||||||||||
А4 | НУАТ 721434.001 | Стремянка рессоры | 1 | Альбом | ||||||||||||||
А4 | НУАТ 722522.001 | Наконечник распорной планки передний | 1 | Альбом | ||||||||||||||
А4 | НУАТ 741547.001 | Кронштейн педали сцепления | 1 | Альбом | ||||||||||||||
А4 | НУАТ 715453.001 | Серьга рессоры | 1 | Альбом | ||||||||||||||
А4 | НУАТ 722532.001 | Рычаг разжимной ручного тормоза | 1 | Альбом | ||||||||||||||
А4 | НУАТ 722561.001 | Ролик рулевого механизма | 1 | Альбом | ||||||||||||||
А4 | НУАТ 722572.001 | Червяк рулевого механизма | 1 | Альбом | ||||||||||||||
А4 | НУАТ 711342.001 | Ступица ведомого диска сцепления | 1 | Альбом | ||||||||||||||
НУАТ 459323.001 КП | ||||||||||||||||||
Изм. | Лист | № документа | Подпись | Дата | ||||||||||||||
Разработал | Анцыгин С.М. | Расчёт автомобиля Москвич-2140 Ведомость курсового проекта | Лит. | Лист | Листов | |||||||||||||
Проверил | Абрамов А.М. | к | 1 | 1 | ||||||||||||||
Т.контр. | НовГУ-ОМЭ, гр.7061 | |||||||||||||||||
Н.контр. | ||||||||||||||||||
Утвердил |
Размещено на http://www.allbest.ru
67