125372 (690498)
Текст из файла
План
1 Описание исполнительного механизма и технологического процесса его работы 2
2 Задание на курсовое проектирование 3
2.1 Кинематический анализ механизма 3
2.2 Построение нагрузочной диаграммы скорости как функции угла поворота кривошипа 9
3 Построение планов скоростей 10
4 Расчёт моментов 13
4.1 Расчёт статического момента 13
4.2 Расчёт динамического момента 14
6. Выбор муфт 18
8 Расчёт на статическую прочность выходного вала редуктора 21
Вывод 25
Список используемой литературы 26
1 Описание исполнительного механизма и технологического процесса его работы
В данном курсовом проекте рассматривается расчет привода подъёмно-качающегося стола. Стол предназначен для передачи слитка с одного ручья прокатного стана на другой. Слитки на стол подаются рольгангом в нижнем положении и снимаются с него в верхнем положениях. В исходное положение (нижнее) стол возвращается без слитка. Двигатель выключается до следующего поступления слитка на стол.
2 Задание на курсовое проектирование
2.1 Кинематический анализ механизма
Рассчитать привод подъёмно-качающегося стола, схема которого приведена на рис. 1, нагрузочная диаграмма угловой скорости на рис. 2
Рис. 1. Кинематическая схема подъёмно-качающегося стола:
| 1 - слиток; 2 - стол; 3 - штанга; 4 - трёхплечий рычаг; | 5 - контргруз; 6 -шатун; 7 - кривошип; 8 - редуктор. |
В таблице 1 приведены значения параметров для варианта 1.
Таблица 1
| 1 | Вес слитка, кН, Gсл | 30 |
| 2 | Вес стола, кН, Gст | 800 |
| 3 | Вес контргруза, кН, Gгр | 208 |
| 4 | Длина слитка, м, Lсл | 2,4 |
| 5 | Расстояние ОзА, м, Lа | 8,2 |
| 6 | Длина стола, м, Lст | 10 |
| 7 | Радиус кривошипа, м, rкр | 0,35 |
| 8 | Длина шатуна, м, Lш | 3,0 |
| 9 | Радиус 1 го рычага, м, rl | 0,65 |
| 10 | Радиус 2 го рычага, м, r2 | 0,7 |
| 11 | Радиус 3 го рычага, м, r3 | 1,7 |
| 12 | Угол наклона рычагов к горизонту, град, γ | 5 |
| 13 | Число циклов в час, 1/ч, Z | 170 |
| 14 | Время работы, с, toб | 8,4 |
| 15 | Угловая скорость двигателя, рад/с, ωдв | 75 |
По нагрузочной диаграмме угловой скорости (рис. 2) определим:
значение угловой скорости ωmax;
зависимость угловой скорости от угла поворота φ кривошипа;
вычислим передаточное число редуктора.
Разобьем нагрузочную диаграмму на участки I, II, III.
Участок I
Время изменяется в пределах
движение равноускоренное, угол поворота определим по формуле
, (1)
где:
εI – угловое ускорение рад/с.,
t – время в с.,
φ – угол поворота.
εI -находим из условия, что к моменту 0.1t, ω I = 0.7ωmax, Так как в начальный момент ω= 0 поэтому ω = ε t, следовательно
(2)
Уравнение вращательного движения на I участке примет вид
(3)
Угол поворота φ на участке I к моменту 0.1toб
(4)
Из выражения (3) выразим t.
, (5)
подставим в выражение (1) уравнение движения (5) и закон изменения угловой скорости (2), получаем
(6)
Отсюда:
(7)
Участок II
Время изменяется в пределах
,
движение равноускоренное, угловое ускорение определим по формуле
. (8)
Где:
∆ω – изменение скорости за весь второй участок
1 ωmax - 0,7 ωmax = 0,3ωmax;
∆t – изменение времени за весь второй участок
0,7toб - 0,1toб = 0,6toб.
Уравнение вращательного движения на этом участке
φ= φо+ ωо(t-to)+ ε(t-to)2 /2
φо– угол поворота в начале участка II(конец участка I),
to– начальный момент времени для участка II,
ωо– скорость вращения в начале участка II.
Подставляя все значения, получаем
φ = 0,035ωmax toб+0,7 ωmax(t - 0,1toб)+ 0,5ωmax(t - 0,1toб)2/2toб (9)
Выражение (9)
при t=0,1toб (начало участка II) дает значение φ = 0,035ωmax toб
при t=0,7toб (конец участка II) дает значение φ = 0,545 ωmax toб
Закон изменения скорости на участке II примет вид
(10)
Подставим значение ω0=0,7ωmax и
получим
(11)
Отсюда
. Значение t подставим в выражение (9)
Из этого выражения выразим ωII
(14)
Участок III
Время изменяется в пределах
,
Так как движение равнозамедленное, отрицательное угловое ускорение определим по формуле
. (15)
Где:
∆ω – изменение скорости за весь третий участок ∆ω = ωmax;
∆t – изменение времени за весь третий участок ∆t = 1 - 0,7toб.= 0,3 toб
Закон изменения скорости на участке III примет вид
(16)
Уравнение вращательного движения на этом участке
φ= φо+ ωо(t-to)+ εIII (t-to)2 /2
φо– угол поворота в начале участка III(конец участка II), φ = 0,545 ωmax toб
to– начальный момент времени для участка III, to = 0,7toб
ωо– скорость вращения в начале участка III- ωо= ωmax.
Подставляя все значения, получаем
φ = 0,545 ωmax toб + ωmax(t - 0,7toб) - ωmax(t - 0,7toб)2/0,6toб (17)
Выражение (17)
при t = 0,7toб (начало участка III) дает значение φ = 0,545 ωmaxtoб
при t = toб (конец участка III) дает значение
φ= 0,545 ωmax toб+ 0,3ωmax toб - ωmax(0,09toб2)/0,6toб=0,695ωmaxtoб
Из выражения (16) выразим t
, (18)
и подставим в выражение (17). Преобразовывая, получим.
Из этого выражения выразим ωIII
(18)
Значение ωmax определим из выражения (17) при t = toб (конец участка III) φ=0,695ωmaxtoб. Полный оборот φ = 2π выходной вал редуктора делает за toб=8,4с, поэтому ωmax= 2π/0,695 toб = 1,05рад/с
Передаточное число редуктора:
Где:
ωдв = 75-угловая скорость быстроходного вала редуктора, рад/с;
ωmax = 1,05-угловая скорость тихоходного (ведомого) вала редуктора, рад/с.
2.2 Построение нагрузочной диаграммы скорости как функции угла поворота кривошипа
По результатам расчётов угловой скорости и углового ускорения кривошипа строим графики ω = ω (φ) рис.1. и ε = ε (φ) рис.2. приложения 1
Диаграммы строим по результатам кинематического расчёта для двенадцати положений механизма через 30О и дополнительно включая точки перелома соответствующие углам поворота для t=0,1toб рассчитываем по формуле (4) т.е.
φ = 0,035ωmax toб = 0,035 * 1,05 * 8,4 = 0,309 рад=180*0,309 /π=18О
и для t=0,7toб рассчитываем по формуле (9) т.е.
φ = 0,545 ωmax toб=0,545*1,05*8,4 =4,807 рад = 180*4,807 /π=276 О
Для уточнения вида диаграммы на участке I найдем ω и ε на углах поворота φ = 6Ои 12О.
ε и ω рассчитываем следующим образом:
при 0О ≤ φ ≤ 18О расчет ведем по выражениям (2)и (7) соответственно;
при 18О < φ ≤276 О расчет ведем по выражениям (8)и (14) соответственно;
при 276 О < φ < 360О расчет ведем по выражениям (15)и(20) соответственно.
Результаты рассчитанные в программе Mathcad 12 (приложение 1) сведены в таблицу 2.
3 Построение планов скоростей
Планы скоростей строятся для двенадцати положений механизма. С помощью планов скоростей определяются скорости всех характерных точек механизма и центров весомых звеньев. Планы скоростей в приложении 2.
Рассматривая движение кривошипа, находим скорость точки А. Модуль скорости точки А определяется выражением
.
Вектор VA скорости точки А направлен в сторону вращения кривошипа перпендикулярно этому звену. На плане скоростей вектор отображается в выбранном масштабе отрезком [ра].
Рассматривая движение шатуна АВ как плоское и выбирая за полюс точку А, находим скорость точки В
VВ = VА+ VВА.
При этом векторном уравнении неизвестны лишь модули векторов VА и VВА (здесь VВА - скорость точки В во вращательном движении звена ВА вокруг полюса А), следовательно, это уравнение можно решить графически.
Отложив в масштабе вектор VА([ра] перпендикулярен ОА), через конец этого вектора проведём прямую, перпендикулярную шатуну АВ. Из точки р проводим прямую, перпендикулярную звену QB в пересечении этих прямых получим точку В. Длины отрезков [рв] и [ав] в масштабе плана скоростей отражают скорость точки В – VВ и скорость точки В вокруг точки А - VВА соответственно.
Очевидно,
.
Скорости точек С и Е отображаются на плане скоростей отрезками [рс] и [ре] соответственно и могут быть найдены аналогично предыдущему, то есть
.
Направлены VС и VЕ перпендикулярно положению плеч r2 и r3 соответственно.
Скорость VD точки D определяем графически. Для этого через точку С проводим перпендикуляр положению штанги СD. Через точку Р проводим перпендикуляр к положению стола, точка пересечения прямых есть точка D.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















