125270 (690390), страница 3
Текст из файла (страница 3)
Положение 2:
Положение 5:
Положение 21:
положение 24:
Следовательно, приведенный момент сил трения будет равен:
положение 2:
положение 5:
положение 21:
положение 24:
1.6 Динамическая модель
В качестве динамической модели выбрано механизм, совпадающий с основным механизмом (согласно проведенному структурному анализу), который совершает вращательное движение с той же угловой скоростью и обладающий кинетической энергией равной суммарной кинетической энергии исходного механизма. При этом момент инерции замещающего механизма совпадает с приведенным моментом инерции исходного механизма, если в качестве звена приведения выбрать первое звено. В процессе движения механизма будем считать, что на него действует момент равный приведенному моменту исходного механизма, если в качестве звена приведения выбрать первое звено.
Для нахождения приведенного момента инерции механизма (в качестве звена приведения выберем первое звено) воспользуемся тем, что суммарная кинетическая энергия механизма должна быть равна кинетической энергии звена приведения. Откуда и определим приведенный момент инерции для первого и второго цилиндров.
Следовательно:
Учитывая, что получается:
Приведенный момент сил тяжести и сил давления газов в цилиндрах определим из условия равенства мощности приведенного момента и суммарной мощности сил тяжести и давления газов в цилиндрах двигателя. Используя то, что мощность силы есть скалярное произведение силы на скорость точки приложения силы, получим:
Для третьего и четвертого цилиндров приведенные величины найдем с учетом сдвига по фазе между соответствующими цилиндрами.
Для всех исследуемых положений значения приведенного момента инерции механизма и приведенного момента активных сил, указаны в таблице:
Таблица 1.5.1. Результаты расчетов
№ | | | | | ||||||
1 | 90 | 40 | 130 | 136,6 | 90 | 180 | 0,013213 | 0,040855 | 1,5 | -54,0 |
2 | 50 | 2,93 | 130 | 157,88 | 0 | 180 | 0,022786 | 0,033788 | 2622,1 | -47,4 |
3 | 50 | 29,73 | 130 | 170,5 | 0 | 180 | 0,03798 | 0,017818 | 1817,7 | -16,6 |
4 | 50 | 50 | 50 | 124,33 | 0 | 0 | 0,039419 | 0,014419 | 882,9 | -0,8 |
5 | 50 | 71,9 | 50 | 86,73 | 0 | 180 | 0,028345 | 0,028435 | 370,9 | 13,8 |
6 | 50 | 101,7 | 50 | 63,27 | 0 | 180 | 0,017313 | 0,040414 | 133,9 | 52,9 |
7 | 90 | 140 | 50 | 43,2 | 90 | 180 | 0,013213 | 0,036496 | -1,5 | 49,5 |
8 | 130 | 178,77 | 50 | 19,38 | 180 | 180 | 0,017313 | 0,024148 | -21,9 | 34,6 |
9 | 130 | 151,9 | 50 | 13,3 | 180 | 180 | 0,028345 | 0,01505 | -40,4 | 10,9 |
10 | 130 | 130 | 130 | 53,57 | 180 | 0 | 0,039419 | 0,013674 | -52,3 | 3,1 |
11 | 130 | 109,73 | 130 | 89,65 | 180 | 180 | 0,03798 | 0,020391 | -50,2 | -26,1 |
12 | 130 | 82,93 | 130 | 115,97 | 180 | 180 | 0,022786 | 0,03262 | -30,4 | -58,2 |
13 | 90 | 40 | 130 | 136,6 | 90 | 180 | 0,013213 | 0,040855 | 1,5 | -221,4 |
14 | 50 | 2,93 | 130 | 157,88 | 0 | 180 | 0,022786 | 0,033788 | 3,3 | -657,2 |
15 | 50 | 29,73 | 130 | 170,5 | 180 | 180 | 0,03798 | 0,017818 | 51,7 | -691,0 |
16 | 50 | 50 | 50 | 124,33 | 180 | 0 | 0,039419 | 0,014419 | 52,3 | 633,7 |
17 | 50 | 71,9 | 50 | 86,73 | 180 | 0 | 0,028345 | 0,028435 | 38,9 | 2676,3 |
18 | 50 | 101,7 | 50 | 63,27 | 180 | 0 | 0,017313 | 0,040414 | 19,3 | 1567,9 |
19 | 90 | 140 | 50 | 43,2 | 90 | 0 | 0,013213 | 0,036496 | -1,5 | 708,3 |
20 | 130 | 178,77 | 50 | 19,38 | 180 | 0 | 0,017313 | 0,024148 | -21,9 | 285,0 |
21 | 130 | 151,9 | 50 | 13,3 | 180 | 0 | 0,028345 | 0,01505 | -40,4 | 83,2 |
22 | 130 | 130 | 130 | 53,57 | 180 | 180 | 0,039419 | 0,013674 | -101,2 | -22,5 |
23 | 130 | 109,73 | 130 | 89,65 | 180 | 180 | 0,03798 | 0,020391 | -432,1 | -26,1 |
24 | 130 | 82,93 | 130 | 115,97 | 180 | 180 | 0,022786 | 0,03262 | -804,2 | -44,4 |
Определим работу приведенного момента активных сил. Для этого построим диаграмму приведенного момента активных сил в зависимости от угла поворота звена приведения (первого звена), для исследуемых 24 положений (два полных оборота) пользуясь тем, что работа приведенного момента равна: