123557 (689515)
Текст из файла
Омский государственный технический университет
Кафедра “Авиа- и ракетостроение”
Специальность 160801 - “Ракетостроение”
Курсовая работа
по дисциплине
“Строительная механика летательных аппаратов”
Основы расчёта оболочек
Омск 2005
Содержание
-
Расчет цилиндрической оболочки, подкрепленной шпангоутами
-
Исследование напряжённо-деформированного состояния полусферической оболочки, заполненной жидкостью
-
Исследование напряжённо-деформированного состояния сферической оболочки, заполненной жидкостью
-
Расчёт сферического топливного бака с опорой по экватору
5. Расчёт бака на прочность
Список литературы
1. РАСЧЕТ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ, ПОДКРЕПЛЕННОЙ ШПАНГОУТАМИ
Условие задачи. Рассмотрим цилиндрическую оболочку постоянной толщины , радиуса
, подкрепленную шпангоутами, равномерно расположенными по её длине. Сечение шпангоута:
. Оболочка нагружена избыточным давлением
(рис.1).
Цель расчета. Определить минимальное расстояние между шпангоутами , которое позволяет исключить взаимное влияние на оболочку двух соседних шпангоутов.
Рис.1. Расчетная схема
Исходные данные
Погонная нагрузка МПа;
Радиус оболочки м;
Толщина оболочки м;
Ширина шпангоута , м;
Толщина шпангоута , м;
Материал оболочки:
марка ВТ6С (О);
коэффициент Пуассона ;
модуль Юнга
Выполнение расчёта
Расчётная схема 1. Шпангоуты абсолютно жёсткие
Определим цилиндрическую жёсткость оболочки по формуле:
;
Вычислим коэффициент затухания гармонической функции
по формуле:
;
Определим силу взаимодействия между шпангоутами и оболочкой:
Определим перерезывающую силу на краю оболочки:
Определим погонный изгибающий момент в месте установки шпангоута:
Погонный изгибающий момент по длине оболочки, затухающий по периодическому закону, вычислим по следующей формуле:
где - число расчётных точек на всей области существования функции
.
Принимаем .
Так как область существования гармонической функции определяется условием
, то находим шаг вычислений
момента
из выражения:
;
Результаты расчёта заносим в таблицу 1 и вычерчиваем график функции (рис.2, рис.3).
С использованием графика определяем координату
второй точки пересечения графика функции
с осью абсцисс и находим минимальное расстояние между шпангоутами
:
Расчётная схема 2. Расчёт подкреплённой оболочки с податливыми (упругими) шпангоутами
Найдём площадь поперечного сечения шпангоута :
Определим коэффициент податливости шпангоута :
Погонный изгибающий момент по длине оболочки с учётом податливости шпангоута:
Результаты вычислений заносим в таблицу 1 и строим график функции , совмещённый с графиком
(рис.2, рис.3).
Определим в процентах снижение величины изгибающего момента при учёте податливости шпангоута:
;
Таблица 1
2. ИССЛЕДОВАНИЕ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОЛУСФЕРИЧЕСКОЙ ОБОЛОЧКИ, ЗАПОЛНЕННОЙ ЖИДКОСТЬЮ
Условие задачи: Тонкостенный сосуд (рис.1), выполненный в виде полусферы, частично заполнен жидкостью. Закрепление оболочки по диаметру окружности – свободное.
Цель расчета:
1. Построить эпюры погонных меридиональных и кольцевых
усилий.
2. Определить толщину стенки оболочки, без учёта её собственного веса.
Исходные данные:
Радиус сферы: м;
Угол зеркала жидкости: ;
Плотность жидкости (горючее): ;
Коэффициент безопасности ;
Материал оболочки:
Марка ВТ6С (О);
предел прочности .
Выполнение расчёта
1. Расчёт участка оболочки над уровнем жидкости
Рассмотрим участок оболочки (рис. 1). На расстоянии
от полюса
отсекаем часть оболочки нормальным коническим сечением с углом широты
(рис. 2).
1.1 Определяем границы участка BC: .
1.2 Составляем уравнение равновесия внешних и внутренних сил в проекции на вертикальную ось для отсечённой части оболочки:
,
где - вес жидкости, заполняющей полусферу;
- координаты расчётного сечения;
- меридиональная погонная сила.
1.3 Определяем высоту столба жидкости в полусферической оболочке:
1.4 Находим объём шарового сегмента, заполненного жидкостью:
1.5 Вычисляем вес жидкости по формуле:
1.6 Определяем текущий радиус кольцевого сечения оболочки:
1.7 Находим погонное меридиональное усилие из уравнения равновесия отсечённой части оболочки:
.
1.8 Определяем погонное кольцевое усилие для участка
, используя уравнение Лапласа:
,
где ,
– главные радиусы кривизны расчётного сечения оболочки;
– интенсивность внешней нагрузки на стенку в расчётном сечении оболочки.
Для сферы R1 = R2 и для участка
= -
.
Результаты расчёта заносим в таблицу 1 при условии .
Таблица 1
№ точки |
|
|
|
1 | 90 | 1035 | -1035 |
2 | 87 | 1037 | -1037 |
3 | 84 | 1046 | -1046 |
4 | 81 | 1061 | -1061 |
5 | 78 | 1081 | -1081 |
6 | 75 | 1109 | -1109 |
7 | 72 | 1144 | -1144 |
8 | 69 | 1187 | -1187 |
9 | 66 | 1240 | -1240 |
10 | 63 | 1303 | -1303 |
11 | 60 | 1380 | -1380 |
2. Расчёт участка оболочки под уровнем жидкости
Рассмотрим участок оболочки (рис.1). Построим нормальное коническое сечение на расстоянии
от полюса оболочки. Положение расчётного сечения определяется углом широты
2.1 Определим границы участка :
.
2.2 Составляем уравнение равновесия внешних и внутренних сил в проекции на вертикальную ось для отсечённой части оболочки:
,
где - вес жидкости, заключённой в шаровом сегменте высотой
;
- давление жидкости в расчётном сечении;
- площадь поперечного сечения оболочки на уровне
;
- радиус поперечного сечения оболочки на уровне
.
2.3 Определяем составляющие уравнения равновесия:
Объём шарового сегмента:
,
где .
Вес жидкости: .
Давление жидкости на уровне от зеркала жидкости:
.
Площадь поперечного сечения
,
где .
Значения составляющих уравнения равновесия заносим в таблицу 2.
Таблица 2
№ точки |
| Vшс, м3 | G, Н | q, Па | S, м2 | r, м |
1 | 60 | 0,932 | 7313 | 0 | 3,443 | 0,974 |
2 | 54 | 0,656 | 5145 | 775,06 | 3,217 | 0,910 |
3 | 48 | 0,436 | 3419 | 1493 | 2,955 | 0,836 |
4 | 42 | 0,270 | 2118 | 2147 | 2,661 | 0,753 |
5 | 36 | 0,153 | 1199 | 2728 | 2,337 | 0,661 |
6 | 30 | 0,077 | 601,96 | 3232 | 1,988 | 0,563 |
7 | 24 | 0,032 | 254,83 | 3651 | 1,617 | 0,458 |
8 | 18 | 0,011 | 82,72 | 3982 | 1,229 | 0,348 |
9 | 12 | 0,00212 | 16,64 | 4222 | 0,827 | 0,234 |
10 | 6 | 0,000134 | 1,05 | 4366 | 0,416 | 0,118 |
11 | 0 | 0 | 0 | 4415 | 0 | 0 |
2.4 Подставим найденные значения в уравнение равновесия и определим меридиональное усилие
:
.
2.5 Получим выражение для погонного кольцевого усилия из уравнения Лапласа при
R1 = R2 = R,
.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.