123557 (689515), страница 2

Файл №689515 123557 (Основы расчёта оболочек) 2 страница123557 (689515) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Результаты расчёта заносим в таблицу 3 при условии .

Таблица 3

№ точки

φ, град.

, Н/м

,Н/м

1

60

1380

-1380

2

54

1548

-676,2

3

48

1716

-35,93

4

42

1877

538,4

5

36

2026

1,044

6

30

2158

1477

7

24

2272

1836

8

18

2363

2118

9

12

2429

2320

10

6

2470

2442

11

0

2483

2483

По данным таблиц строим эпюры погонных усилий. Схема эпюры приведена на рис. 4.

С помощью эпюры определяем наиболее напряжённое сечение оболочки и максимальные усилия

.

3. Определение толщины стенки оболочки

3.1 Найдём допускаемое напряжение материала оболочки:

3.2 Определим толщину стенки:

,

3. ИССЛЕДОВАНИЕ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СФЕРИЧЕСКОЙ ОБОЛОЧКИ, ЗАПОЛНЕННОЙ ЖИДКОСТЬЮ

Условие задачи: Построить эпюры безмоментных напряжений и для сферического сосуда (рис. 1), полностью заполненного жидкостью.

Исходные данные:

Радиус оболочки: м;

Плотность жидкости (окислитель):

;

Толщина стенки оболочки:

.

Рис. 1. Схема оболочки

Выполнение расчёта

1. Выводы расчётных зависимостей для верхней полусферы

В верхней полусфере отсечём часть оболочки нормальным коническим сечением с углом при вершине конуса и составим уравнение равновесия отсеченной части оболочки (рис. 2):

,

где – равнодействующая сил давления жидкости на стенку оболочки в проекции на

вертикальную ось.

Жидкость действует на стенку оболочки переменным давлением. Равнодействующую сил давления жидкости на вертикальную ось определим по формуле:

,

где – объём цилиндра; – объём шарового сегмента, рис. 2.

,

где - высота столба жидкости в расчётном сечении.

Рис. 2. Расчётная схема

Получаем:

.

Из уравнения равновесия после подстановки выражения для силы имеем:

.

Отсюда меридиональное напряжение:

.

Определим кольцевое напряжение . Для этого обратимся к уравнению Лапласа, учитывая, что для сферической оболочки R1=R2=R::

,

где - давление жидкости в рассматриваемом сечении оболочки.

После подстановки в уравнение Лапласа получаем:

.

Принимая угол в диапазоне от 0˚ до 90˚, занесём значения составляющих уравнения равновесия, кольцевых и меридиональных напряжений с шагом угла , равным 10˚,в таблицу 1.

Таблица 1

, град.

л, м3

, м3

, Н

, Па

, Па

, Па

0

0

0

0

0

0

0

10

0,002049

0,001027

11,445

191,409

2,442

7,350

20

0,032

0,016

174,869

759,818

9,616

2,925

30

0,15

0,077

818,854

1688

2,107

6,528

40

0,432

0,226

2314

2948

3,603

1,148

50

0,938

0,503

4870

4501

5,338

1,768

60

1,677

0,932

8349

6300

7,161

2,506

70

2,599

1,512

12170

8290

8,869

3,354

80

3,585

2,213

15360

10410

1,019

4,307

90

4,473

2,982

16700

12600

1,074

5,371

2. Выводы расчётных зависимостей для нижней полусферы

Рис. 3. Расчётная схема

Отсечём нормальным коническим сечением часть сферы (рис. 3). Вес жидкости в объёме шарового сегмента и равнодействующая от гидростатического давления жидкости , находящейся выше рассматриваемого сечения, уравновешиваются реакцией опоры N и результирующим меридиональным усилием от погонных меридиональных сил, распределённых по круговому контуру шарового сегмента в сечении . Отсюда получим следующее уравнение равновесия:

,

где - реакция опоры, равная весу жидкости в объёме шара.

Н;

- гидростатическое давление жидкости;

- площадь поперечного сечения;

- вес жидкости в объёме шарового сегмента.

После подстановки получим:

Отсюда имеем:

.

Для нижней части полусферы определяем из уравнения Лапласа:

, где .

Отсюда:

.

Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия, кольцевых и меридиональных напряжений с шагом угла , равным 10˚,в таблицу 2.

Таблица 2

, град.

, Па

S, м2

, Н

, Па

, Па

90

12600

3,976

33410

1,074

5,371

80

14790

3,856

24790

9,958

6,568

70

16910

3,511

16940

6,922

7,957

60

18910

2,982

10440

-1,908

9,667

50

20700

2,333

5633

-1,411

1,2

40

22260

1,643

2529

-4,314

1,57

30

23520

0,994

859,303

-1,095

2,298

20

24450

0,465

178,593

-3,038

4,288

10

25020

0,12

11,508

-1,361

1,489

0

25210

0

0

-1,362

1,362

Выводы

В опорной точке сферы безмоментные напряжения обращаются в бесконечность. Это является следствием обращения в ноль площади сечения, по которой действуют напряжения . В реальных условиях сосредоточенных в точке сил не существует, и поэтому эта особенность имеет место лишь в расчётной схеме.

Рис. 4. Эпюра напряжений и

4. РАСЧЁТ СФЕРИЧЕСКОГО ТОПЛИВНОГО БАКА С ОПОРОЙ ПО ЭКВАТОРУ

Характеристики

Тип файла
Документ
Размер
26,74 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6566
Авторов
на СтудИзбе
298
Средний доход
с одного платного файла
Обучение Подробнее