123333 (689432), страница 4
Текст из файла (страница 4)
Для определения коэффициента перекрытия зубчатой передачи аналитически воспользуемся формулой
(4.35)
где, - углы профиля в точке на окружности при вершине
- угол зацепления
5. Синтез кулачкового механизма
5.1 Вычисление масштабных коэффициентов диаграмм движения толкателя
После построения и графического интегрирования заданного графика аналога ускорения толкателя мы получили диаграмму аналога скорости толкателя, которую также графически интегрируем, в результате также получаем диаграмму аналога пути толкателя.
Исходя из диаграммы пути, определяем масштабные коэффициенты на фазе удаления и фазе возврата. Воспользуемся для этого формулой
(5.1)
где, - масштабный коэффициент для графика пути,
- ход толкателя,
- максимальное значение пути,
Для фазы удаления
Для фазы возврата
Определим масштабный коэффициент по углу
(5.2)
где, - рабочая фаза,
- расстояние между 1-й и 18-й точками на чертеже.
Определим масштабные коэффициенты для диаграммы скорости
(5.3)
где, - масштабный коэффициент скорости,
- полюсное расстояние на диаграмме скорости,
Для фазы удаления
Для фазы возврата
Определим масштабные коэффициенты для аналога ускорения
(5.4)
где, - масштабный коэффициент ускорения,
- полюсное расстояние на диаграмме ускорения,
Для фазы удаления
Для фазы возврата
5.2 Определение минимального радиуса кулачка
Для его нахождения исходными данными являются график пути и график скоростей и
, ход толкателя
, угол давления
, эксцентриситет
На основании этих данных строится зависимость .
По оси откладываются расстояния пути, которые берутся с графика пути в определённом масштабе, т.к. у нас разные масштабы на фазе удаления и фазе возврата, то мы должны привести их к одному.
Найдём поправочные коэффициенты
(5.5)
где, - поправочный коэффициент
- новый масштабный коэффициент, одинаковый для оси
и
, он принимается произвольно.
Через полученные точки на линии параллельной откладываем отрезки аналогов скоростей для соответствующего интервала, взятые с графика скорости.
Отрезок скорости приводится к тому же масштабу, что и графики пути.
Определим поправочные коэффициенты
(5.6)
где, - поправочный коэффициент
После построения получили некоторую кривую, к ней под углом проводим касательные.
Из области выбора центра выбираем с учётом масштаба
.
5.3 Определение углов давления
Найдём зависимость угла давления от угла
.
(5.7)
где, - угол давления,
- расстояние
,
- длина коромысла АВ,
- отрезок скорости,
- угол между отрезком АВ и расчётной прямой на чертеже,
Произведём расчёт при
Остальные значения угла давления определяем аналогично, и результаты сносим в таблицу
Таблица 5.1 – Углы давления
| 0 | 14,37 | 27,75 | 43,12 | 57,5 | 71,87 | 86,25 | 100,62 | 115 |
| -13,56 | 13,91 | 30,29 | 35,8 | 35,27 | 32,23 | 26,84 | 19,45 | 10,04 |
| 135 | 152,5 | 170 | 187,5 | 205 | 222,5 | 240 | 257,5 | 275 |
| 10,04 | -0,31 | -10,52 | -19,58 | -27,28 | -34,7 | -36,88 | -30,67 | -13,56 |
При построении используем следующие масштабные коэффициенты
5.4 Построение центрового и действительного профиля кулачка
Определим полярные координаты для построения центрового профиля кулачка.
(5.8)
где, - радиус вектор,
- отрезок пути,
(5.9)
(5.10)
Рассчитываем и
для положения 5
Все остальные значения сводим в таблицу
Таблица 5.2 – Значения полярных координат
Полож | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||
| 0 | 14,37 | 28,75 | 43,12 | 57,5 | 71,87 | 86,25 | 100,62 | 115 | |||||||
| 20 | 21,24 | 24,7 | 29,89 | 36 | 42,11 | 47,3 | 50,76 | 52 | |||||||
Полож | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||
| 135 | 152,5 | 170 | 187,5 | 205 | 222,5 | 240 | 257,5 | 275 | |||||||
| 52 | 50,58 | 46,96 | 41,85 | 36 | 29,53 | 25,04 | 21,42 | 20 |
Определим масштабный коэффициент для построения кулачка
По полученным значениям и
строим центровой профиль кулачка. Для этого в масштабе
проводим окружность радиусом
.
От радиуса в направлении противоположном вращению кулачка, отложим полярные углы
, на сторонах которых отложим
. Соединив плавной кривой концы радиусов-векторов получим центровой профиль кулачка.
Действительный профиль кулачка найдём, как кривую, отстоящую от центрового профиля на расстоянии, равном радиусу ролика.
Определим радиус ролика
(5.11)
где, - радиус ролика,
(5.12)
где, - радиус кривизны профиля кулачка, определяется графически
Радиус кривизны профиля кулачка приближённо определяется как радиус вписанной окружности участка кулачка, где его кривизна кажется наибольшей. На этом участке произвольно выбираются точки . Точку
соединим с точками
и
. К серединам получившихся хорд восстановим перпендикуляры, точку пересечения которых примем за центр вписанной окружности.
Принимаем
На центровом профиле кулачка выбираем ряд точек, через которые проводим окружность с радиусом ролика. Огибающая эти окружности является действительным профилем кулачка.
Литература
-
Артоболевский И.И. Теория механизмов и машин; Учеб. для втузов. – 4-е изд., перераб. и доп. – М.: Наука. 1988;
-
Девойно Г.Н. Курсовое проектирование по теории механизмов и машин. 1986.