123333 (689432), страница 3
Текст из файла (страница 3)
Реакцию определяем из следующего векторного уравнения
найдём из векторного уравнения
, отсюда
Таблица 3.3 – Силы и вектора сил 2-го и 3-го звеньев
|
|
|
|
|
|
|
|
| |
| 9196,598 | 2149,35 | 9444,472 | 6572,285 | 83,3 | 384,65 | 47,04 | 2981,904 | 1370,979 |
| 279,86 | 65,4 | 287,4 | 200 | 2,53 | 11,7 | 1,43 | 90,74 | 41,72 |
Рассмотрим группу Асура 4-5:
Найдём тангенциальную реакцию из следующего уравнения:
(3.13)
Из уравнения (3.13) получим
С помощью плана сил определим неизвестные реакции и
:
Найдём масштабный коэффициент
Из плана сил определяем значения неизвестных сил:
Реакцию определяем из следующего векторного уравнения
найдём из векторного уравнения
, отсюда
Таблица 3.3 – Силы и вектора сил 2-го и 3-го звеньев.
|
|
|
|
|
|
|
|
| |
| 13499,197 | 3550,439 | 13958,357 | 7378,425 | 83,3 | 24183,7 | 47,04 | 4432,944 | 3459,338 |
| 365,91 | 96,24 | 378,356 | 200 | 2,25 | 655,524 | 1,27 | 120,159 | 93,769 |
Рассмотрим начальный механизм.
Определим уравновешивающую силу
Уравновешивающий момент равен
Реакцию определяем графически
Из плана сил находим
3.5 Определение уравновешивающей силы методом Жуковского
Для этого к повёрнутому на плану скоростей в соответствующих точках прикладываем все внешние силы действующие на механизм, не изменяя их направления. Моменты раскладываем на пару сил, изменив их направления.
, (3.14)
где, и
- пара сил,
- момент инерции i-го звена,
- длина i-го звена,
Записываем уравнение моментов сил относительно полюса :
, отсюда
Уравновешивающий момент равен
3.6 Расчёт погрешности 2-х методов
, (3.15)
где, - сила полученная методом Жуковского,
- сила полученная методом планов,
- погрешность,
4. Проектирование кинематической схемы планетарного редуктора и расчёт эвольвентного зацепления
4.1 подбор числа зубьев и числа сателлитов планетарного редуктора
Рисунок 4.1
Определим неизвестное число зубьев 3-го колеса из условия соосности:
(4.1)
где, - число зубьев 1-го колеса
- число зубьев 2-го колеса
Определим передаточное отношение
(4.2)
где, - передаточное отношение от 1-го звена к водилу, при неподвижном третьем звене
- передаточное отношение от 4-го звена к пятому
(4.3)
где, - число зубьев 4-го колеса
- число зубьев 5-го колеса
(4.4)
где, - передаточное число от 1-го ко 3-му колесу при неподвижном водиле
(4.5)
где, - передаточное число от 1-го ко 2-му колесу
- передаточное число от 2-го ко 3-му колесу
Проверяем условие соседства:
(4.6)
где, - число сателлитов планетарного механизма
Из формулы (4.4) выразим K
Примем
- условие соседства выполняется
Проверяем условие сборки
(4.7)
где, - сумма чисел зубьев в одной из ступеней механизма
- целое число
- условие сборки выполняется
4.2 Исследование планетарного механизма графическим и аналитическим способом
Рассчитаем радиусы колёс
(4.8)
где, - радиус колеса,
- модуль
Изображаем механизм в выбранном масштабе
(4.9)
Определим радиусы колёс на схеме
Строим план линейных скоростей. Для построения прямой распределения скоростей точек звена необходимо знать скорости двух точек. Для 1-го звена это точки А и О. Скорость точки О равна нулю, так как ось неподвижна. Скорость точки А определим по формуле
(4.10)
где, - угловая скорость 1-го звена,
Угловую скорость 1-го звена определим по формуле
(4.11)
где, - частота вращения двигателя,
Определим угловую скорость вращения водила и второго зубчатого колеса
Вектор скорости точки А изображаем в виде отрезка Aa. Принимаем
.
Определим масштабный коэффициент
(4.12)
где, - масштабный коэффициент скорости,
Прямая Оа является линией распределения скоростей точек 1-го звена.
Скорость точки В равна нулю, так как колесо 3 неподвижно.
Прямая Оb является линией распределения скоростей тачек водила.
Строим план угловых скоростей.
Из произвольно выбранной точки Р строим пучок лучей, параллельных прямым Оа, Оb и Eb. При пересечении этих прямых с горизонтальной осью расположенной от точки Р на произвольном расстоянии РS, получим отрезки S1, S5 и SH, которые являются аналогами угловых скоростей.
Найдём передаточное отношение
(4.13)
Рассчитаем погрешность двух методов
(4.14)
где, - передаточное отношение, заданное в условии
- передаточное отношение найденное с помощью плана угловых скоростей
4.3 Расчёт параметров зубчатых колёс
Рассчитываем смещение колёс
Так как , то
Так как , то
Коэффициент суммы смещений
(4.15)
где, - смещение 1-го колеса
- смещение 2-го колеса
Определим угол зацепления по формуле
(4.16)
где, ,
- эвольвентная функция углов
и
Межосевое расстояние определим по формуле
(4.17)
где, - модуль зубчатой передачи
Определим делительные диаметры
(4.18)
Делительное межосевое расстояние
(4.19)
Коэффициент воспринимаемости смещения
(4.20)
где, - межосевое расстояние,
- делительное межосевое расстояние,
Коэффициент уравнительного смещения
(4.21)
Определим радиусы начальных окружностей
(4.22)
Радиусы вершин зубьев
(4.23)
где, - коэффициент высоты головки зуба
Радиусы впадин зубьев
(4.24)
где, - коэффициент радиального зазора
Высота зуба
(4.25)
Толщины зубьев по делительной окружности
(4.26)
Радиусы основных окружностей
(4.27)
Углы профиля в точке на окружности вершин
(4.28)
Толщины зубьев по окружности вершин
(4.29)
Проверим зубья на заострение
(4.30)
Зубья удовлетворяют условию заострения
Угловой шаг зубьев
(4.31)
4.4 Определение коэффициента относительного скольжения
Для 1-го колеса:
(4.32)
где, - коэффициент относительного скольжения 1-го зубчатого колеса
- передаточное отношение от второго колеса к первому
- длина теоретической линии зацепления
- переменное расстояние от точки
к точке
и
Для 2-го колеса:
(4.33)
Определим масштабный коэффициент относительного скольжения
Результаты сводим в таблицу
Таблица 4.1 – Коэффициенты скольжения
|
|
|
|
|
0 |
|
| 1 | 25 |
20 | -8,2605 | -206,51 | 0,892014 | 22,3 |
40 | -3,13025 | -78,26 | 0,757884 | 18,95 |
60 | -1,42017 | -35,50 | 0,586805 | 14,67 |
80 | -0,56513 | -14,13 | 0,361073 | 9,03 |
100 | -0,0521 | -1,3 | 0,04952 | 1,24 |
120 | 0,289917 | 7,25 | -0,40829 | -10,21 |
140 | 0,534214 | 13,36 | -1,14691 | -28,67 |
160 | 0,717438 | 17,94 | -2,53904 | -63,48 |
180 | 0,859944 | 21,5 | -6,14002 | -153,5 |
200 | 0,97395 | 24,35 | -37,3877 | -934,69 |
224,28 | 1 | 25 |
|
|
4.5 Определение коэффициента перекрытия зубчатой передачи графическим и аналитическим способом
Коэффициент перекрытия зубчатой передачи определяем (графически) по формуле
(4.34)
где, - длина активной линии зацепления
- основной шаг,