25007 (686694), страница 3
Текст из файла (страница 3)
где Zi, Xi,Yi – текущие координаты трассы по соответствующим осям.
На основании табл. 4 строится вертикальная и горизонтальная проекции скважины (рис. 3).
Рис. 3. вертикальная и горизонтальная проекции скважины
3. Выбор технических средств и описание методики проведения инклинометрии
В процессе бурения необходимо контролировать положение оси скважины в пространстве с целью: определения истинного положения полезного ископаемого и правильного построения геологического разреза и определения положения забоя скважины.
Различается два вида контроля искривления скважин – оперативный и плановый.
3.1 Оперативный контроль искривления скважин
Оперативный контроль – осуществляется силами буровой бригады через 15 – 20 м бурения скважины или один раз в сутки и предназначен для определения начала существенного искривления скважины и своевременного принятия мер для его устранения.
Оперативный контроль следует проводить при:
-
пересечении буровым снарядом перемежающихся слоев пород различной твердости, сопровождающемся изменением зенитного и азимутального углов;
-
пересечении мягких несцементированных или сильно разрушенных пород, тектонических нарушений, трещин, пустот, а также при выходе из зоны осложнения;
-
смене пород с различными анизотропными свойствами;
-
смене диаметра скважины;
-
перед каждым циклом искусственного искривления и по окончания цикла искривления;
3.2 Плановый контроль искривления скважин
Плановый контроль – осуществляется геофизическими (каротажными) отрядами через определенные интервалы бурения (практически через 200 – 300 м проходки) или по всему стволу скважины после окончания ее бурения до проектной глубины.
Особенности технологии проведения планового контроля:
-
измерение зенитных и азимутальных углов осуществляется обычно через 10 – 20 м при подъеме прибора (инклинометра) из скважины;
-
скорость подъема прибора не > 2000 – 2500 м/час;
-
глубины определяются по счетчику;
-
при повторных замерах в одной скважине перекрывается не менее 5 точек прежнего замера;
-
результаты измерений заносятся в буровой журнал.
3.3 Инклинометры
По назначению инклинометры разделяются на приборы:
-
для измерения только зенитного угла;
-
для измерения зенитного угла и азимута.
Датчики для измерения зенитного угла разделяются на две группы:
-
использующие принцип горизонтального уровня жидкости;
-
использующие принцип отвеса.
Датчики для измерения азимута:
-
магнитная стрелка;
-
гироскоп;
-
щуп.
По способу измерения и передачи информации на поверхность инклинометры подразделяются на:
-
забойные, производящие измерения и передачу информации в процессе бурения (телеметрические системы);
-
приборы, опускаемые в скважину на кабеле и выдающие информацию в процессе подъема из скважины или спуска;
-
автономные приборы, спускаемые на колонне бурильных труб и выдающие информацию только после подъема инструмента.
3.3.1 Инклинометры для оперативного контроля
Автономные компасные инклинометры оперативного контроля
Автономные компасные инклинометры оперативного контроля делятся на две группы [5].
-
Одноточечные приборы, обеспечивающие за один спуск в скважину измерение одной точки ее ствола (зенитного и азимута) в диапазоне зенитных углов от 2 до 178°.
-
Многоточечный фотографический инклинометр МТ-4-40 конструкции ВИТР, обеспечивающий за один спуск в скважину измерение до 100 точек ее ствола с регистрацией на 8-миллиметровой пленке; диапазон его работы от 2 до 60°.
Инклинометры оперативного контроля опускаются в наклонные скважины на тонком канате диаметром 3 – 4 мм с использованием портативных лебедок типа электрической лебедки ЛОК-1500 конструкции ВИТРа, а в горизонтальные и восстающие скважины с помощью бурильной колонны.
Спуск автономных инклинометров оперативного контроля должен осуществляться при использовании блок-трубы (рис. 4) скважины со счетчиком глубины.
К одноточечным инклинометрам относятся [5]:
-
электромеханический инклинометр ИОК-42 конструкции ВИТР
-
механические малогабаритные инклинометры МИ-42У и МИ-ЗОУ конструкции «Востказгеология».
Автономный одноточечный инклинометр ИОК-42
Автономный одноточечный инклинометр ИОК-42 представляет устройство, обеспечивающее его работу от автономного блока электропитания. Техническая характеристика представлена в табл 5 [5].
Таблица 5
Техническая характеристика ИОК-42
| Диапазон измерения углов, градус: зенитных азимутальных | 0 – 180 0 – 360 |
| Погрешность измерения углов, градус: зенитных (при углах 3 – 177°) азимутальных | ±1 ±2,5 |
| Питание скважинного прибора (сухие элементы А343 или дисковые аккумуляторы типа Д-0,26 С), В | 2×4,5 |
| Внешнее гидростатическое давление на защитном кожухе, МПа, не менее наружный диаметр защитного кожуха длина кожуха, в т. ч. с утяжелителем | 20 42 2000/3000 |
| Масса, кг, в т. ч. с утяжелителем | 8/15,5 |
Спуск прибора производят с заарретированным (закрепленным) чувствительным измерительным элементом (ЧЭ), который по команде электронного таймера в заданной точке скважины, по истечении установленного времени, освобождает ЧЭ, магнитная стрелка устанавливается в плоскости магнитного меридиана Земли, затем по команде таймера ЧЭ основа закрепляется. После этого прибор извлекается из скважины. На дневной поверхности прибор с ЧЭ извлекается из защитной гильзы, и показания ЧЭ определяются визуально (желательно с помощью увеличительной лупы).
Прибор позволяет проводить измерения в скважинах любого направления от близких к вертикали до восстающих благодаря сферическому магнитно-гравитационному чувствительному элементу ЧЭ (2 – 178°).
При замере скважин с зенитными углами 2 – 60° наиболее эффективно спускать инклинометр на тросе с помощью любой лебедки. При измерении скважин с зенитными углами свыше 60° инклинометр в точку замера доставляется на бурильной колонне. При этом для устранения влияния стальной бурильной колонны на чувствительный элемент (датчик азимута) инклинометр должен быть удален от бурильной колонны на 3 – 5 м. Это может быть достигнуто использованием одной легкосплавной бурильной трубы (ЛБТ) или набором специальных антимагнитных штанг аналогичной длины. В сложных геологических условиях (большое количество шлама, обрушения стенок скважины и т.п.) следует помещать прибор в специальный контейнер из немагнитного материала.
Инклинометр состоит из защитного кожуха, тросовой головки, чувствительного элемента (ЧЭ), арретирующего механизма, таймера, блока питания.
Защитный кожух предохраняет инклинометр от механических воздействий и служит для защиты прибора от внешнего гидростатического давления столба жидкости в скважине. Кожух представляет собой трубу диаметром 42 мм из сплава Д16Т. Для увеличения скорости спуска инклинометра в скважине с вязкой промывочной жидкостью к нему присоединяется утяжелитель.
Тросовая головка является универсальным узлом, обеспечивающим крепление прибора к тросу лебедки или к колонне бурильных труб. Головка состоит из верхнего наконечника и тросовой муфты.
Магнитно-гравитационный чувствительный элемент инклинометра является датчиком зенитного угла и азимута и представляет собой две полусферы, подвешенные в подвижной рамке (рис. 5).
Нижняя полусфера (отвес) со смещенным вниз центром тяжести вращается на агатовых подпятниках в керновых опорах рамки и обеспечивает индикацию зенитного угла. В отвесе, перпендикулярно плоскости среза полусферы, установлен подпружиненный керн, на котором свободно вращается на агатовом подпятнике верхняя полусфера (картушка), являющаяся датчиком азимута, так как вклеенные внутри ее два постоянных магнита ориентируют картушку в направлении магнитного меридиана Земли. Рамка с полусферами вращается вокруг оси инклинометра на бронзовых подшипниках и, благодаря эксцентрично расположенному центру тяжести, всегда самоустанавливается в апсидальной плоскости скважины [5].
Рис. 5. Сферический чувствительный элемент автономного одноточечного инклинометра ИОК-42 ВИТРа.
1 – магниты; 2 – картушка компосная (азимутов); 3, 4 – керн, подпятник; 5 – отвес со шкалой зенитных углов; 6 – пружина; 7 – втулка; 8 – керн картушки; 9 – рамка апсидальная; 10 – стакан из оргстекла; 11 – основание (дно) картушки; 12 – подпятник
По взаимному расположению сферы отвеса и указателя, закрепленного на рамке, определяют зенитный угол, по расположению осей магнитов относительно апсидальной плоскости, нанесенной на нижней полусфере (отвесе) – азимут.
Арретирующий механизм фиксирует установившееся в точке замера состояние чувствительного элемента и обеспечивает неизменность взаиморасположения полусфер и рамки при подъеме инклинометра из скважины и при отсчете показаний.
Кинематическая схема инклинометра приведена на рис.6 [5].
Рис. 6. Схема кинематическая инклинометра ИОК-42 конструкции ВИТР.
1 – электродвигатель; 2 – муфта сцепления; 3 – винтовая пара; 4 – кулиса; 5 – уравнительная пружина; 6 – компенсационная пружина; 7 – фиксатор; 8 – подвижная вилка; 9 – измерительная сфера; 10 – фрагмент защитного колпачка
Приводом всех деталей арретирующего механизма служит электродвигатель 1 типа ИДР-6, который работает по команде, поступающей от таймера. По первой команде через муфту сцепления 2 вращение передается на винтовую пару 3, где оно преобразуется в поступательное движение. Через кулису 4 отводится толкатель, подпружиненный уравнительной пружиной 5, а компенсационная пружина б с помощью фиксатора 7 отводит вилку 8 от купола защитного колпака 10 и одновременно освобождает измерительную сферу 9. По второй команде полярность питающего напряжения меняется на обратную, и происходит арретирование измерительного узла чувствительного элемента.
Таймер – чувствительный элемент инклинометра в процессе хранения, транспортирования и спуска находится в заарретированном состоянии, что обеспечивает надежность его показаний и долговечность работы инклинометра. Временные интервалы цикла измерения обеспечиваются таймером.
Таймер позволяет устанавливать время задержки, необходимое для выполнения вспомогательных работ и спуска инклинометра до точки измерения. По истечении времени задержки автоматически включается двигатель в режим разарретирования (30 с), далее происходит остановка двигателя (1 мин) для установки и успокоения деталей чувствительного элемента, и затем снова происходит включение двигателя (30 с) в режим арретирования.
Таймер представляет собой печатную электронную плату с пятью движковыми переключателями (S1 – S5) для установки необходимого времени задержки и тумблера включения питания инклинометра.
Блок питания обеспечивает автономное питание инклинометра и представляет цилиндрический контейнер из диэлектрического материала. В качестве элементов питания используют сухие элементы типа А343 (шесть штук), которые обеспечивают напряжение ± 4,5 В. Возможно использование других источников питания, обеспечивающих необходимое напряжение, например аккумуляторов типа Д-026Д или аккумуляторных батарей типа НКГЦ-0,45-1 (НКГЦ-1,8-1).
Инклинометры МИ-42У и МИ-ЗОУ
Инклинометры МИ-42У и МИ-ЗОУ конструкции «Востказгеология» имеют аналогичное конструктивное устройство.
-
инклинометр МИ-42У обеспечивает измерение в одной точке пространственного положения скважины диаметром 46 мм и более до глубины 3500 м;
-
инклинометр МИ-30У может использоваться в скважинах 36 мм и более и, кроме того, для измерения скважин, буримых комплексами ССК-46 и больших диаметров при спуске прибора внутри колонны бурильных труб без подъема последних из скважины (рис. 7).
Инклинометр МИ-42У состоит из следующих основных частей:
-
измерительных узлов (0 – 90 ) и (0 – 5 )
-
часового фиксирующего механизма
-
защитной гильзы
-
заводного ключа.
Инклинометр МИ-ЗОУ измерительного узла 0 – 5 не имеет.
Техническая характеристика данных инклинометров представлена в табл. 6 [5]
Таблица 6.
Техническая характеристика инклинометров МИ-42У и МИ-ЗОУ
| МИ-42У | МИ-ЗОУ | |
| Диапазон измерения углов, градус: зенитных азимутальных | 0 – 180 0 – 360 | |
| Погрешность измерения углов, градус: зенитных азимутальных (> 4°) | ± 0°30 ± 4 от – 10 до + 60 | |
| Диапазон рабочих температур, ºС | 25 | |
| Максимальное гидростатическое давление на прибор, МПа | 7 | 5 |
| Габаритные размеры, мм: наружный диаметр длина | ||
| 42 | 30 | |
| 1200 | ||
Измерительный узел (0 – 90) представляет собой несущую рамку, состоящую из корпуса 3, на торцах которой посредством штифтов 2 закреплены кремневые опоры 1, в которой вмонтированы измерительные элементы – угломер зенитных углов 8 и буссоль магнитная 4. Несущая рамка имеет форму вырезанного цилиндра для размещения буссоли и выполняет роль эксцентричного груза, так как в ее нижней части размещены три свинцовых груза и благодаря которым она устанавливается в апсидальной плоскости.
В средней части корпуса рамки в камере траверсы 10, закрепленной винтами 7, на кремневых втулках подвешен угломер 8, цапфы которого имеют боковую амортизацию плоскими пружинами 9 с винтами. Угломер является частью диска (~110°) с цилиндрическим выступом, на котором нанесена шкала 0 – 90°. Для увеличения чувствительности угломер также снабжен свинцовым грузом. Закрепление буссоли и угломера осуществляется пружинами 5, 6.
Измерение инклинометром осуществляется следующим образом. При заводе часового фиксирующего механизма несущая рама, угломер и стрелки буссоли находятся в свободном состоянии и под действием гравитационных и магнитных сил занимают определенное положение. При срабатывании фиксирующего механизма происходит постепенное перемещение штока 11 и всей промежуточной фиксирующей системы до соприкосновения кольца с тормозной системой 5, 6 несущей рамки и ее упора в амортизатор. Далее происходит срабатывание тормозных систем, обеспечивающее арретирование измерительных элементов.
Отсчет производится визуально после подъема прибора из скважины и его извлечения из защитной гильзы.
















