166063 (685437), страница 5
Текст из файла (страница 5)
Вывод:
Учащиеся: Следовательно, любое изменение температуры на несколько градусов будет в разы изменять скорость химической реакции.
Учитель: Практически так звучит закон Вант-Гоффа, который будет здесь действовать: При изменении температуры реакции на каждые 10 ºС скорость химической реакции изменяется (увеличивается или уменьшается) в 2-4 раза.
Опыт №4. Зависимость скорости химической реакции от площади поверхности соприкосновения реагирующих веществ
В три пробирки (под номерами) прилить по 2 мл раствора HCl, и добавить в первую – гранулу Zn, во вторую – стружку Zn, в третью – порошок Zn (одинаковые по массе).
Наблюдения: химическая реакция идет во всех трех пробирках (выделение газа), но с разной интенсивностью.
Уравнение реакции:
Zn + 2НCl → ZnCl2 + Н2↑
-
гранулы медленно
-
стружка с высокой скоростью
-
порошок бурно
Проблема:
Учитель: все вещества одинаковы по своей химической природе, одинаковы по массе и концентрации, реагируют при одинаковой температуре, однако интенсивность выделения водорода (а следовательно и скорость) разная.
Обсуждение:
Учащиеся: Одинаковые по массе гранулы Zn, стружки Zn и пыль Zn, имеют разные занимаемые объемы в пробирке, разную степень измельчения. Там где эта степень измельчения наибольшая – скорость выделения водорода максимальна.
Учитель: эта характеристика – площадь поверхности соприкосновения реагирующих веществ. В нашем случае различна площадь поверхности соприкосновения цинка с раствором Н2SO4.
Вывод:
Учащиеся: Скорость химической реакции зависит от площади соприкосновения реагирующих веществ: чем больше площадь соприкосновения реагирующих веществ (степень измельчения), тем больше скорость реакции.
Учитель: такая зависимость наблюдается не всегда: так для некоторых гетерогенных реакций, например, в системе Твердое вещество – Газ, при очень высоких температурах (более 500 0С) сильно измельчённые (до порошка) вещества способны спекаться, тем самым площадь поверхности соприкосновения реагирующих веществ уменьшается.
Занятие №2. Тема: Катализ и катализаторы
Приведённый ниже опыт проводится фронтально при объяснении нового материала в изучении темы 1. «Скорость химических реакций. Химическое равновесие» у учеников 9-х классов (см. тематическое планирование для 9 класса, уроки 7). Использовался теоретический материал учебника 8 класса О. С. Габриеляна Химия-8 [8], методическое пособие для учителя [9].
Цель работы: изучить влияние катализатора на скорость химической реакции.
Форма работы: фронтальная (демонстрационный эксперимент).
Реактивы и оборудование: 3% раствор перекиси водорода, MnO2 (порошок), детергент; спиртовка, пробирки, пробиркодержатель, спички, лучина, кипящая водяная баня.
Ход работы
Опыт №5. Зависимость скорости химической реакции от катализатора
Следует повторить понятие реагент в химической реакции, что бы потом учащийся смог дифференцировать реагент и катализатор в конкретной реакции.
В пробирку № 1 прилить 3%-ый раствор перекиси водорода и внести детергент (растворенный стиральный порошок). В пробирку № 2 прилить 3%-ый раствор перекиси водорода внести порошок оксида марганца (IV) и внести детергент (растворенный стиральный порошок).
Наблюдения: химическая реакция очень бурно проходит во второй пробирке и сопровождается выделением газа (детергент поднимается), по окончании реакции во второй пробирке масса оксида марганца (IV) не изменилась.
Учитель: Какой это газ? Водород или кислород? Как доказать выделение каждого из газов?
Ученики: внесём тлеющую лучину.
Наблюдения: лучина вспыхивает
Ученики: следовательно, это кислород
Уравнение реакции:
2Н2О2 → 2Н2О + О2↑
Проблема: если условия проведения опытов в пробирке № 1 и № 2 – концентрация перекиси водорода, температурный режим, природа исходного вещества – были одинаковые, а внесённый оксид марганца (IV) не израсходовался в ходе опыта, то почему во второй пробирке так интенсивно выделялся кислород?
Обсуждение:
1) проходит ли реакция разложения перекиси водорода в первый пробирке?
Обсудить с учащимися условия хранения, используемого в быту как бактерицидное средство, вещества – перекиси водорода. Обратить внимание на то, что особенно на свету она разлагается на воду и кислород, который в момент образования обладает сильными окислительными свойствами. По этой причине перекись водорода хранят в герметичных тёмных склянках.
Учитель: нам уже известно, что повышение температуры способствует повышению скорости реакции. Подогреем пробирку № 1 на водяной бане.
Наблюдения: детергент поднимается по пробирке.
Учащиеся: следовательно, газ выделяется.
2) является ли добавленный в пробирку 2 оксид марганца (IV) реагентом в данной реакции?
Ученики: обращают внимание, что после окончания реакции во 2 пробирке, остался черный порошок оксида марганца (IV). Следовательно – это не реагент.
Учитель: Используемое нами вещество – оксида марганца (IV) – это катализатор. Поскольку, катализаторы – это вещества, которые изменяют скорость химической реакции, но сами в ходе этого не расходуются. Катализаторы бывают положительные (увеличивают скорость химической реакции) и отрицательные – ингибиторы (уменьшают скорость химической реакции). катализаторы способны изменять природу реагирующего вещества (его энергию активации).
Вывод по занятиям 1 и 2:
Учитель: Давайте подведем итоги и сделаем выводы. От чего будет зависеть скорость химической реакции?
Учащиеся:
- от природы реагирующих веществ;
- от их концентрации;
- от температуры реакции;
- от площади соприкосновения реагирующих веществ;
- от катализатора.
Занятие №3. Тема: Химические свойства металлов
Приведённые ниже опыты проводились при объяснении нового материала и/или при обобщении в изучении темы 2. «Металлы» у учеников 9-х классов (см. тематическое планирование для 9 класса, уроки 12, 24). Использовался теоретический материал учебника 9 класса О. С. Габриеляна Химия-9 [10], методическое пособие для учителя [9], настольная книга для учителя [6].
Цель работы: изучить особенности взаимодействия разных металлов с водой, с кислотами и с солями.
Форма проведения эксперимента: фронтальная (демонстрационный эксперимент при объяснении нового материала).
Учитель: Назовите основное химическое свойство металлов – простых веществ.
Учащиеся: Металлы являются восстановителями, т. к. их атомы легко отдают электроны, превращаясь при этом в положительно заряженные ионы – катионы.
Учитель: (запись на доске)
М0 – n ē → М n+
(восстановитель, окисляется)
Для того чтобы прошла реакция, которая записана на доске, необходимо наличие окислителя. Давайте вспомним, какие вещества могут быть окислителями?
Учащиеся: (при обсуждении выявляется список веществ реагирующих с металлами):
- неметаллы: О2, Hal2, S, H2 и др.
- Н2О;
- кислоты;
- соли.
Опыт №1. Взаимодействие активных металлов с водой и демонстрация образцов металлов – простых веществ
Реактивы и оборудование: Аl (гранулы), Na, фенолфталеин; кристаллизатор.
Ход работы:
Учитель: Проведем опыт. Для опыта возьмём образцы двух активных металлов (см. Ряд активности металлов): Аl (гранулы) и Na. В кристаллизатор с водой прильем 2-5 капель фенолфталеина и поместим небольшой, очищенный (скальпелем) от перекиси и предварительно подсушенный (сухой фильтровальной бумагой) от керосина кусочек Na, а в пробирку с водой поместим гранулу алюминия.
Наблюдения:
-
натрий «бегает» по поверхности воды и быстро реагирует с ней, полностью исчезнув, а вода окрашивается в розовато-малиновый цвет;
-
в пробирке с алюминием признаков реакции не наблюдаем.
Уравнения реакций:
2 Na + 2 H2O → 2 NaOH + H2 ↑
Алюминий, будучи достаточно активным металлом, также должен вступать в реакцию с водой по уравнению: 2Аl + 6Н2О → 2Аl(OH)3 + 3H2 ↑, однако признаков реакции мы не наблюдаем.
Проблема: алюминий – активный металл при н.у. не показывает признаков реакции взаимодействия с водой?
Обсуждение:
Учитель демонстрирует учащимся образцы некоторых щелочных, щелочноземельных и амфотерных металлов. Учащиеся наблюдают, что одни металлы хранятся при обычных условиях (Аl, Zn, Fe), другие в стеклянной банке под слоем керосина (Na, Ca, К).
Учащиеся: Исходя из их химических свойств, одни металлы более активны, а другие – менее. Щелочные и щелочноземельные металлы самые активные и легко взаимодействуют с кислородом воздуха, поэтому хранят под слоем керосина. А другие менее активные они взаимодействуют с кислородом только при нагревании, поэтому могут храниться при обычных условиях.
Учитель: почему сегодня алюминиевая посуда рекомендуется только для хранения холодных продуктов, а использование её для нагревания нежелательно.
Учащиеся: при нагревании происходит химический процесс: 2Аl + 6Н2О → 2Аl(OH)3 + 3H2 ↑, ионы алюминия переходят в раствор, и их присутствие нежелательно для пищевых блюд.
Учитель: таким образом, алюминий при н.у. защищён оксидной плёнкой Al2O3. Именно эта оксидная плёнка предохраняет алюминий от активного взаимодействия с водой при н.у., если же она будет удалена, то алюминий будет энергично реагировать с водой.
Опыт №2. Взаимодействие металлов с кислотами
Реактивы и оборудование: Аl (гранулы), , Zn (гранулы), 40%-ый раствор НCl,; пробирки.
Ход работы:
В две пронумерованные пробирки нальем 3 мл 40%-го раствора НCl, 2-3 капли фенолфталеина и поместим в каждую гранулы Zn и алюминия, соответственно. В маленький кристаллизатор нальём небольшое количество (примерно 2 см в высоту) 40%-го раствора НCl .
Наблюдения:
- в пробирке с цинком: реакция сразу идёт бурно, с выделением газа, изменения окраски фенолфталеина не происходит
2HCl + Zn → ZnCl2 + H2↑
- в пробирке с алюминием: сначала не наблюдаем признаков реакции, а затем реакция идёт бурно, с выделением газа выделением газа, изменения окраски фенолфталеина не происходит
6HCl + 2Al → 2AlCl3 + 3H2↑
Проблема: все взятые металлы активны, однако они по-разному реагируют с водой?
В частности, алюминий и цинк? Оба металла находятся в раду активности рядом, значения их стандартных электродных потенциалов очень близки по значению Е0(Аl) = – 1,66, Е0(Zn) = – 0,76.
Обсуждение:
Учащиеся: пользуясь результатами опыта № 1, делают вывод, что отсроченное во времени выделение пузырьков газа на поверхности алюминия связано с присутствием на его поверхности более прочной оксидной плёнки.
Учитель: следовательно, прочность оксидной плёнки позволяет защищать алюминий не только при его взаимодействии с водой, но и при взаимодействие с сильными кислотами. Можно привести в пример опыт с нагреванием алюминиевой проволоки в пламени газовой горелки (алюминий плавится внутри капсулы, стенки которой образованы Al2O3 и предупреждают стекание алюминия).
Вывод по опыту: согласно ряду напряжения металлов, металлы, стоящие до водорода будут вытеснять его из раствора кислот (исключение: щелочные и щелочно-земельные металлы: они реагируют с водой, растворяющей кислоты).
Опыт №4. Взаимодействие металлов с растворами солей
Реактивы и оборудование: Zn (гранулы), Fe (железный гвоздь), Сu (восстановленная), 40%-ый раствор сульфата железа (II), 5 %-ый раствор СuSO4, 40%-ый раствор сульфата (хлорида) железа (III), 10 % раствор сульфата (хлорида) цинка, раствор хлорида (сульфата) железа (Ш), пробирка с налетом серебра; пробирки.
Ход опыта:
В пробирку № 1 прильём раствор медного купороса (раствор СuSO4·5Н2О) объёмом 5 мл и добавим кусочек железа (железный гвоздь).
В пробирку № 2 прильём раствор сульфата железа (II) и добавим восстановленную медь.
В пробирку № 3 прильём раствор медного купороса (раствор СuSO4·5Н2О) объёмом 5 мл и добавим гранулу цинка.
В пробирку № 4 прильём раствор сульфата (хлорида) цинка объёмом 5 мл и добавим восстановленную медь.