166063 (685437), страница 6
Текст из файла (страница 6)
В пробирку № 5 прильём раствор сульфата (хлорида) железа (III) и добавим порошок восстановленной меди.
Наблюдения (запись уравнений реакций на доске):
В пробирке № 1: СuSO4 + Fe → Сu + FeSO4: красно-рыжий налет на кусочке Fe.
В пробирке № 2: FeSO4 + Cu: ничего не происходит.
В пробирке № 3: СuSO4 + Zn → Сu + ZnSO4: красно-рыжий налет на кусочке Zn.
В пробирке № 4: ZnSO4 + Cu: ничего не происходит.
В пробирке № 5: Fe2(SO4)3 + Cu: медь растворяется, появляется зеленовато-голубоватое окрашивание раствора.
Учитель: известно, что металлы реагируют с растворами солей с выделением металла, входящего в состав соли и соли металла, используемого в ходе работы, по схеме: Ме + Ме*А → Ме* + МеА.
Проблема: Все предложенные опыты – это опыты с использованием металла и соли другого металла, однако не все результаты опытов вписываются в схему Ме + Ме*А → Ме* + МеА. Почему?
Учитель: какая характеристика вещества является определяющей для его способности вступать во взаимодействие с другим веществом?
Ученик: природа реагирующего вещества.
Учитель: определяющим в природе металла является его активность. Обратимся к ряду активности металлов
Учащиеся: медь располагается правее цинка и железа.
Учитель: в реакции № 2 и № 4 с использованием меди простого вещества действительно не было наглядных признаков реакции. А в реакциях соли меди с железом и цинком простыми веществами (пробирки № 1 и № 3) реакции проходили. Вывод: медь – это менее активный металл, чем железо и цинк. Таким образом, металлы расположены в ряду активности слева направо в порядке уменьшения их активности.
Проблема: В пробирке № 5: Fe2(SO4)3 + Cu: медь растворяется, появляется зеленовато-голубоватое окрашивание раствора.
Учитель: при проведении реакции № 2 мы показали, что медь это менее активный металл, чем железо, и она не способна вытеснять железо из раствора его соли. Однако в пробирке № 5 мы отметили признаки реакций. В чём отличие использованных для реакции № 2 и № 5 солей?
Учащиеся: для реакции № 2 была взята соль железа (II), а для реакции № 5 – соль железа (III).
Учитель: таким образом, соли железа (III), в отличие от солей железа (II), способны вступать во взаимодействие с менее активными металлами. Предположим, что растворение меди происходит вследствие проявления ионами трехвалентного железа окислительных свойств,
Ученики: составляет схему предполагаемого уравнения реакции в ионном виде:
Cu0 + Fe3+ Cu2+ + Fe2+
В итоге учитель делает вывод, что ионы Fe3+ обладают настолько сильным окислительным свойством, что могут даже в водном растворе окислить медь, в заключении составляем уравнение реакции № 5 в молекулярном виде:
Cu + Fe2(SO4)3 → 2Fe SO4 + CuSO4
Учитель: следовательно, правило о том, что металлы, стоящие в ряду активности металлов правее железа, не должны реагировать с солями железа, справедливо только для растворов солей железа (II). Соли железа (III) в растворе обладают сильными окислительными свойствами и реагируют со многими менее активными металлами, включая медь.
В подтверждение сказанного учитель проводит опыт № 6:
в пробирку № 6 с налетом серебра (после реакции «серебряного зеркала») прилить раствор хлорида железа (III).
Наблюдения:
В пробирке № 6: Fe2(SO4)3 + Ag: растворение серебра, а через 2-3 минуты полное исчезновение налета серебра со стенок пробирки. Причем одновременно с растворением серебра происходит легкое помутнение раствора вследствие образования осадка сульфата серебра.
Ученики: составляет схему предполагаемого уравнения реакции в ионном виде:
Ag0 + Fe3+ Ag+ + Fe2+
После этого выдвинутую гипотезу проверяем исследованием полученной в реакции № 6 смеси. Качественная реакция на ионы серебра (с хлоридами натрия или соляной кислотой) дает положительный результат, это объясняется тем, что растворимость сульфата серебра значительно выше, чем хлорида.
В заключении ученики по краткому ионному уравнению составляют уравнение реакции № 6 в молекулярном виде:
2Ag + Fe2(SO4)3 → Ag2SO4 + 2FeSO4
Занятие № 4. Тема «Металлы»
Этот опыт проводится на уроке № 21 (см. тематическое планирование 9 класс) по теме «Соединения алюминия».
Цель опыта: изучить химические свойства солей алюминия
Форма проведения опыта: фронтальная (демонстрационный эксперимент).
Реактивы и оборудование: Na, 10 % раствор сульфата (хлорида) алюминия, фенолфталеин; пробирки, кристаллизатор.
Ход опыта:
В кристаллизатор с раствором хлорида алюминия и несколькими каплями фенолфталеина поместить небольшой кусочек натрия.
Наблюдения: выделение пузырьков газа, розово-малиновое окрашивание раствора и осадка белого цвета.
Учитель: натрий – это более активный металл, чем алюминий. Следовательно, натрий должен вытеснять алюминий из растворов его солей по уравнению:
3Na + AlCl3 → Al + 3NaCl
Проблема: Согласно этому уравнению реакции мы не должны наблюдать выделение газа и осадка белого цвета. Кроме того, ни полученное по нашей схеме вещество NaCl, ни исходное вещество AlCl3 не имеет щелочной реакции среды (можно для сравнения предложить раствор хлорида натрия и раствор хлорида алюминия с фенолфталеином). То есть, активный металл натрий не вытесняет менее активный алюминий из растворов его солей?
Учащиеся: натрий активно реагирует с водой растворяющей хлорид алюминия по уравнению: 2Na + 2 H2O → 2 NaOH + H2↑. Таким образом, мы объясняем выделение газа (водорода).
Учитель: как объяснить выделение осадка? Обратимся к таблице растворимости (растворимость исходных и продуктов).
Учащиеся: все исходные вещества и предполагаемые продукты реакции растворимы в воде.
Учитель: какие ионы имеются в предложенном растворе?
Учащиеся: ионы Na+, OH–, Al3+, Cl–.
Учитель: запишите возможные уравнения реакций взаимодействия между этими ионами:
Учащиеся:
Na+ + OH– → NaOH;
Na+ + Cl– → NaСl;
Al3++ 3Cl– → AlСl3;
Al3++ 3OH– → Al(OH)3↓ .
Таким образом, все вещества находятся в одной пробирке, следовательно, вступать во взаимодействие могут не только исходные вещества, но и продукты их взаимодействия.
Учитель: запишем оба уравнения и суммируем их:
2Na + 2 H2O → 2 NaOH + H2↑
3NaOH + AlCl3 → Al(OH)3↓ + 3NaCl
Суммарно: Na + AlCl3 + H2O → Al(OH)3↓ + NaCl + H2↑
Расставим коэффициенты методом электронного баланса:
Na0 + AlCl3 + H+2O → Al(OH)3↓ + Na+Cl + H20 ↑
Na0 – е– → Na+ 2
2 H+ + 2 е– → H20 1
2Na0 + AlCl3 + H+2O → Al(OH)3↓ + 2Na+Cl + H20 ↑
Занятие № 5. Тема: Металлы
Приведённые ниже опыты проводятся в 9 классе при изучении темы «Металлы» на уроке № 23 «Генетические ряды Fe2+ и Fe3+ » (см. тематическое планирование 9 класс).
Цель работы: изучить свойства солей железа (III), как окислителей
Форма работы: фронтальная (демонстрационный эксперимент).
Реактивы и оборудование: кристаллический хлорид аммония и хлорид железа (Ш), колба Вюрца, известковая вода, лучинка, склянки Дрекселя, спиртовка, индикаторная бумага.
Опыт 1. Взаимодействие хлорида железа (III) с хлоридом аммония
Хлорид Fe (III) проявляет окислительные свойства по отношению к различным восстановителям. В беседе предшествующей проведению опыта, перед учащимися ставим вопрос: возможно ли химическое взаимодействие между двумя кристаллическими солями хлоридом железа трехвалентного и хлоридом аммония? В поиске ответа на данный вопрос ученики обращаются к таблице растворимости, так как, им известно, что соли взаимодействуют между собой при условии, что они хорошо растворимы, а в результате реакции обмена получается новая нерастворимая соль. В процессе беседы учитель поясняет, что таблицу растворимости в данном случае, при использовании кристаллических вещест, применять нельзя. Таким образом, предварительное обсуждение приводит учащихся к выводу о невозможности химического взаимодействия между указанными веществами.
Далее проводим эксперимент. Он представляет интерес не только для выяснения окислительных свойств хлорида железа (III), но и как способ получения азота в лабораторных условиях.
Ход опыта:
В соответствии с стехиометрическими коэффициентами в уравнении реакции: 6FeCl3 + 2NH4Cl = 6FeCl2 + 8HCl + N2, учитель готовит смесь кристаллических солей хлорида железа (III) и хлорида аммония. Эту смесь помещают в колбу Вюрца, которую соединяют с двумя склянками Дрекселя, заполненными водой (рис. 1). Промывные склянки необходимы для того, чтобы поглотить выделяющийся в ходе реакции хлороводород. Соблюдая технику безопасности, проводят нагревание. Образовавшийся азот можно собрать в 2-3 пробирки над водой.
Рис. 1. Взаимодействие хлорида железа (III) с хлоридом аммония
Далее проверяем отсутствие примеси хлороводорода, поднеся влажную индикаторную бумагу к отверстию пробирки с азотом. Она не изменяет цвет. Проводим опыт подтверждающий, что собранный газ действительно азот.
а) В первую пробирку с азотом опускаем горящую лучинку она гаснет, не оставляя даже раскаленного уголька.
б) Во вторую – наливаем известковую воду, в отличие от углекислого газа, известковая вода от азота не мутнеет.
Доказав учащимся, что получен азот, отвергаем их мнение о невозможности взаимодействия хлорида железа (III) с хлоридом аммония.
Создается проблемная ситуация. Далее ученики должны выдвинуть свои предположения о роли каждого вещества в данной химической реакции. Анализ состава исходных веществ и результатов опыта приводит к выводу, что хлорид железа (III) выступает в роли окислителя, а соль аммония, имея в своем составе атомы азота в низшей степени окисления (– 3), проявляет восстановительные свойства. Подтверждаем этот вывод и напоминаем учащимся другие примеры проявления данными веществами указанных свойств. Затем предлагаем учащимся самостоятельную работу по составлению уравнения окислительно-восстановительной реакции между хлоридом железа (III) и хлоридом аммония. При составлении уравнения реакции учащиеся должны учесть, что один из продуктов реакции – хлороводород.
6FeCl3 + 2NH4Cl = 6FeCl2 + 8HCl + N2
Fe3+ + e- Fe2+ 6
2N3- - 6e- N20 1
Опыт 2. Взаимодействие роданида железа (III) с фосфорной кислотой
Этот опыт очень эффектен и может быть использован в процессе эвристической беседы не только при изучении темы «Металлы», но и при рассмотрении качеств реакции на фосфат-ионы. В аналитической химии известна реакция взаимодействия растворимых солей железа (III) с фосфат-ионами, сопровождающаяся образованием желтовато-белого осадка фосфата железа трехвалентного. Этот опыт рекомендуем провести на уроке, как пример качественной реакции на фосфат-ионы и с целью подготовки учащихся к обсуждению проблемного эксперимента.