166063 (685437), страница 8
Текст из файла (страница 8)
Цель работы: получить представления о ступенчатом гидролизе неорганических веществ и изучить влияние различных фактором на скорость реакции гидролиза, используя проблемный эксперимент.
Форма работы: фронтальная (демонстрационный эксперимент)
Оборудование и реактивы: кристаллические вещества: Na2CO3, Al2(SO4)3; свежеприготовленные 1%-ые растворы CH3COONa, Na3PO4, Na2HPO4, NaH2PO4; растворы Na2CO3 и Al2(SO4)3, приготовленные задолго до занятия и оставленные в бесцветных склянках на свету и при умеренном нагревании (солнце) в герметичных склянках; универсальная индикаторная бумага, фенолфталеин, спиртовка, спички, пробиркодержатель.
Ход опыта:
Учитель: составьте уравнения реакций гидролиза карбоната натрия и сульфата алюминия в молекулярной, полной и краткой ионной формах
Учащиеся:
1) Na2CO3 + 2НОН → 2NaOH + CO2 ↑+ H2O
2Na+ + CO32- + 2НОН → 2Na+ + 2OH- + CO2↑ + H2O
CO32- + 2НОН → 2OH- + CO2 ↑+ H2O
2) Al2(SO4)3 + 6HOH → 2Al(OH)3↓ + 3H2SO4
2Al3+ + 3SO42- + 6HOH → 2Al(OH)3↓ + 6 H+ + SO42-
Al3+ + 3HOH → Al(OH)3↓ + 3H+
Учитель: согласно предложенному вами уравнению реакции (1) выделяется газ (CO2), а по уравнению (2) – осадок (Al(OH)3). Проведём эксперимент: растворим предложенные соли в воде при н.у. и поместим в их растворы универсальную лакмусовую бумагу.
Наблюдения: в растворе (1) универсальная индикаторная бумага синего цвета (щелочная среда), а в растворе (2) универсальная индикаторная бумага красного цвета (кислая среда), что подтверждается вашими уравнениями реакций. Однако, в пробирке (1) мы не наблюдаем выделения газа, а в пробирке (2) – выделения осадка. Проблема!
Учитель: обратимся к растворам этих же солей, но приготовленным задолго до занятия и оставленным в бесцветных склянках на свету и при умеренном нагревании (солнце) в герметичных склянках. В склянке с карбонатом натрия мы видим пузырьки газа, а в склянке с сульфатом алюминия небольшой осадок. Внесение универсальной индикаторной бумаги даёт результат аналогичный показанному ранее.
Учащиеся: следовательно, мы правильно предположили среду раствора. А сам гидролиз протекает лучше при условиях, отличных от нормальных (более высокие температуры, излучение).
Учитель: действительно, гидролиз солей, образованных сильным основанием и слабой многоосновной кислотой (например, карбонат натрия) и сильной кислотой и слабым многокислотным основанием (например, сульфат алюминия) при н.у. протекает не сразу, а ступенчато. Далее учитель предлагает вспомнить виды солей (нормальные, кислые и основные) и на примере сульфата алюминия рассматривает уравнения реакций ступенчатого гидролиза с образованием основной соли, и с акцентом на число стадий в зависимости от кислотности слабого основания, реакцию среды на каждой из трёх стадий гидролиза и на преимущественном гидролизе по первой ступени. Затем учащиеся самостоятельно составляют уравнение ступенчатого гидролиза карбоната натрия по предложенной схеме, но с образованием кислой соли.
Учитель: таким образом, реакции гидролиза подчиняются тем же правилам в отношении скорости, что и другие реакции: с повышением температуры скорость реакции увеличивается. В подтверждение учащимся предлагается провести опыт с ацетатом натрия и фенолфталеином при н.у., при нагревании и при охлаждении.
Наблюдения: при н.у. – окраска фенолфталеина слабо-малиновая, при нагревании – окраска усиливается, а при охлаждении в холодной воде – слабо-малиновая
Учитель: составьте уравнения реакций гидролиза Na3PO4, Na2HPO4 и NaH2PO4. Согласно уравнениям реакций и, исходя из знания, соли, образованные сильным основанием и слабой кислотой имеют щелочную реакцию среды. Прилейте в пробирки под номерами растворы (1) Na3PO4, (2)Na2HPO4, (3)NaH2PO4, в каждую поместите универсальную индикаторную бумагу.
Наблюдения: (1) Na3PO4 – сильнощелочная (по шкале рН примерно 12), (2)Na2HPO4 – слабощелочная (по шкале рН примерно 9), (3) NaH2PO4 - слабокислая (по шкале рН примерно 6).
Учитель: мы обнаруживаем противоречия между составленными уравнениями реакций и экспериментальными данными. Какая кислота, образует эти соли?
Учащийся: слабая многоосновная ортофосфорная кислота.
Учитель: Рассмотрим сначала гидролиз средней соли – фосфата натрия. Первая (основная) ступень гидролиза выражается следующими уравнениями:
Na3PO4 + HOH Na2HPO4 + NaOH
PO43- + HOH HPO4 2- + OH-
Образующийся при гидролизе ион НРО42- практически не диссоциирует на ионы (см. константы диссоциации Н3РО4), поэтому характер среды определяют ионы ОН-, и среда водных растворов средних фосфатов является сильнощелочной.
При гидролизе гидрофосфатов на первой ступени образуются дигидрофосфат-ионы, что видно из следующих уравнений:
Na2HPO4 + HOH NaH2PO4 + NaOH
HPO42- + HOH H2PO4- + OH-
Образующиеся ионы Н2РО4- заметно диссоциируют:
Н2РО4- Н+ + НРО42- .
Являющиеся продуктом этой диссоциации ионы водорода частично нейтрализуют ионы ОН-, образующиеся при гидролизе, и поэтому среда гидрофосфатов является слабощелочной.
Что касается дигидрофосфатов, то в их растворах наряду с гидролизом:
NaH2PO4 + HOH H3PO4 + NaOH
H2PO4 - + HOH H3PO4 + OH-
идет процесс диссоциации дигидрофосфат-ионов: Н2РО4- Н+ + НРО42-
Причем второй процесс превалирует, поэтому все ионы ОН- (продукт гидролиза) нейтрализуются ионами Н+ (продукт диссоциации), а избыток последних обусловливает слабокислый характер среды растворов дигидрофосфатов.
Занятие № 7. Тема «Гидролиз солей»
Предлагаемая форма проведения проблемного эксперимента может быть осуществлена на уроке, в классе с углубленным изучением химии или на факультативном занятии.
Учитель делит класс на пять примерно равных по силе групп. Если занятие длится 2 ч, то группам (4–5 человек) дается задание провести все пять опытов, обсудить их результаты, написать уравнения происходящих процессов, сделать выводы. Затем проводится жеребьевка, в результате которой группа узнает номер опыта, результаты которого ей предстоит объяснить. Причем докладчика из группы назначает учитель, поэтому группа заинтересована, чтобы все ее представители работали и сумели объяснить и написать уравнения происходящих процессов. После выступления докладчика группа вносит исправления и дополнения. Затем остальные группы исправляют ошибки, дополняют ответы первой группы. Таким образом, итоговая оценка группы складывается из оценки выступления докладчика и оценки выступлений группы. Баллы группе приносят также замечания, дополнения к выступлениям других групп. В конце занятия учитель сообщает места, которые заняли группы, и предлагает группам самостоятельно поставить отличные оценки: 1-е место – трем представителям группы, 2-е место – двум, 3-е место – одному.
Если занятие длится 1 ч, то группам (4–5 человек) дается задание провести по одному из предложенных опытов, обсудить результаты этого опыта, написать уравнения происходящих процессов, сделать выводы. Затем проводится жеребьевка, в результате которой определяется очередность выступления групп. Дальнейший ход – как в предыдущей форме проведения занятия.
Возможна также и другая форма оценивания результатов: учитель предлагает учащимся каждой группы оценить работу членов своей группы, затем учитель спрашивает любого учащегося, и, если оценка, выставленная группой, подтверждается, вся группа получает заявленные оценки. Если же оценка оказывается ниже, все заявленные оценки снижаются на один балл.
Цель работы: рассмотреть взаимодействие веществ с продуктами гидролиза.
Реактивы и оборудование: алюминий (гранулы), оксид меди (II), твёрдый карбонат кальция, 10 %-ые растворы: карбоната натрия, хлорида железа (III), сульфата алюминия, концентрированный раствор хлорида железа (III); пробирки, спиртовка, спички.
Ход работы: Учащиеся получают задание: выполнить 5 опытов.
Опыт 1. Поместить гранулу алюминия в раствор карбоната натрия и нагреть реакционную смесь.
Опыт 2. Поместить гранулу алюминия в раствор хлорида железа(III) и нагреть реакционную смесь.
Опыт 3. Поместить в концентрированный раствор хлорида железа(III) кусочек карбоната кальция.
Опыт 4. Поместить в раствор сульфата алюминия немного (на кончике шпателя) оксида меди(II) и нагреть смесь.
Опыт 5. Учащимся предлагается более сложное задание.
УЧИТЕЛЬ. Вы знаете, что металлы, основные оксиды и нерастворимые соли могут взаимодействовать с растворами средних солей, хотя на первый взгляд это противоречит теоретическим представлениям. Подумайте, какую еще необычную для средних солей реакцию можно провести. Проведите ее и объясните наблюдаемые явления (о п ы т 5).
Учитель предлагает проанализировать продукты реакции, объяснить происходящие явления, написать уравнения соответствующих реакций.
Обсуждение результатов эксперимента
Опыт 1. Соль Na2CO3 в растворе подвергается гидролизу по аниону:
CO32– + H2O HCO3– + OH–,
Na2CO3 + Н2O NaHCO3 + NaOH. (1)
Амфотерный оксид алюминия, образующий защитную пленку на поверхности алюминия, взаимодействует со щелочью, полученной по уравнению (1):
Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]. (2)
Алюминий, лишенный оксидной пленки, взаимодействует с водой:
2Al + 6H2O = 2Al(OH)3 ↓ + 3H2 . (3)
Гидроксид алюминия, образовавшийся в реакции (3), взаимодействует с гидроксидом натрия, полученным по реакции (1), т.к. Al(OH)3 – амфотерный гидроксид:
Al(OH)3 + NaOH = Na[Al(OH)4], (4)
Al(OH)3 + OH– = [Al(OH)4]–.
Поскольку гидроксид-ионы связываются гидроксидом алюминия, равновесие гидролиза (1) смещается вправо, идет вторая ступень гидролиза:
HCO3– + H2O OH– + H2CO3 (H2O + CO2 ),
NaHCO3 + H2O NaOH + H2CO3 (H2O + CO2 ). (5)
В ходе эксперимента учащиеся наблюдают выделение газов, которые представляют собой смесь водорода и углекислого газа.
Кроме того, наблюдается выпадение осадка. Если раствор карбоната натрия был разбавленным и взят не в избытке, то этот осадок не растворяется до конца. Поэтому есть возможность проанализировать этот осадок.