84403 (675858)

Файл №675858 84403 (О неопределенных бинарных квадратичных формах)84403 (675858)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла



МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Х.М. Бербекова

Математический факультет

Кафедра геометрии и высшей алгебры

Нагоева Фатима Хазреталиевна

Дипломная работа

«О неопределенных бинарных квадратичных формах »

Научный руководитель:

д.ф.-м.н.,проф.каф. Г и В А /У.М.Пачевв /

Рецензент:

к.ф.-м.н.,доцент / /

Допущена к защите

«_______» 2002г.

Зав. кафедрой

к.ф.м.н., доцент /А.Х. Журтов/

Нальчик 2002 г.

Оглавление

стр.

Введение 3

§1. Предварительные сведения о бинарных квадратичных 4

формах

§2. О периодах неопределенных бинарных квадратных

форм 13

§3. Об оценке сверху числа приведенных неопределимых

бинарных квадратичных форм 21

§4. О диагональных формах и оценке снизу числа

классов в ряде 27

Литература 35

Введение

Арифметическая теория квадратичных форм берет свое начало с утверждения Ферма о представимости простых чисел суммой двух квадратов.

Теория квадратичных форм впервые была развита французским математиком Лагранжем, которому принадлежат многие идеи в этой теории, в частности, он ввел важное понятие приведенной формы, с помощью которого им была доказана конечность числа классов бинарных квадратичных форм заданного дискриминанта. Затем эта теория была значительно расширенна Гауссом, который ввел много новых понятий, на основе которых ему удалось получить доказательства трудных и глубоких теорем теории чисел, ускользавших от его предшественников в этой области.

Перейдем теперь к краткой характеристике содержания нашей работы, посвященной некоторым вопросам теории неопределенных бинарных квадратичных форм.

Вначале нашей работы приводятся предварительные общие сведения о бинарных квадратичных формах. Во втором параграфе, посвященном периодам неопределенных квадратичных форм поставлены и решены два вопроса о двусторонних формах (теоремы 1,2). В третьем параграфе дается элементарное доказательство известной оценки для числа приведенных неопределенных бинарных квадратичных форм заданного дискриминанта. Наконец, в последнем параграфе устанавливаем, что диагональные формы одного и того же положительного дискриминанта не эквивалентны (теорема 3) и применяем этот результат к оценке снизу для числа классов в каждом роде неопределенных квадратичных форм (теорема 4).

§1. Предварительные сведения о бинарных квадратичных форм.

В данном параграфе мы дадим те общие понятия и свойства, касающиеся бинарных квадратичных форм, на которые будем опираться в дальнейшем изложении.

Определение 1. Бинарной квадратичной формой называется однородный многочлен второй степени от двух переменных, т.е. выражение вида

(1)

где - вещественные числа.

Коэффициенты - называются соответственно первым, вторым и третьим коэффициентами (1) и для краткости такую форму будем обозначать, следуя Гауссу [2], через так, что

В алгебраической теории квадратичных форм (т.е. в теории квадратичных форм над полями) рассматриваются формы, у которых второй коэффициент без множителя , т.е.

.

Но в арифметической теории квадратичных форм (т.е. в теории форм над кольцами и в первую очередь над кольцом целых чисел) более предпочтительной является запись вида (1).

Определение 2. Бинарная квадратичная форма (1) называется классически целой (или целочисленной по Гауссу), если в ней коэффициенты являются целыми числами.

Мы будем в основном рассматривать только классические квадратичные формы и называть их просто численными.

Определение 3. Бинарные целочисленные квадратичные формы и называются собственно эквивалентными, если существует линейная подстановка переменных

(2)

с целыми коэффициентами и определителем , переводящая форму в форму , т.е. такая, что выполняется равенство

(3)

и несобственно эквивалентными, если целочисленная подстановка (2) с определителем переводит форму в форму . Эквивалентность таких форм обозначаем так: ~

Из (3) и (2) следуют соотношения

(4)

связывающие коэффициенты двух эквивалентных форм и .

Определение 4. Дискриминантом бинарной квадратичной формы называется число .

Предложение 1. Эквивалентные бинарные квадратичные формы имеют один и тот же дискриминант.

Доказательство. Пусть форма эквивалентна (собственно или несобственно) форме . Тогда по определению 3 существуют целые числа с определителем , при которых выполнены соотношения (4). Из них получаем

,

т.е. предложение 1 доказано.

Заметим, что обратное утверждение вообще говоря неверно, т.е. из того, что бинарные квадратичные формы имеют один и тот же дискриминант еще не следует, что они эквивалентны. Следующий общий факт приведем без доказательства.

Предложение 2. Отношение собственной эквивалентности бинарных квадратичных форм обладает свойствами рефлексивности, симметричности и транзитивности.

Определение 5. Если для квадратичной формы и для целого числа при некоторых целых и выполняется равенство , то говорят, что квадратичная форма представляет число .

Пример. Квадратичная форма представляет число , т.к. число является значением квадратичной формы при , т.е. равенство выполняется при .

Предложение 3. Эквивалентные бинарные квадратичные формы представляют одно и то же множество целых чисел.

Доказательство. Пусть формы и эквивалентны. Тогда существует унимодулярная целочисленная подстановка переменных:

и, значит,

.

Положив теперь в этом равенстве , получим

,

т.е. форма тоже представляет число . Поскольку отношение эквивалентности бинарных квадратичных форм обладает свойством симметричности (предложение 2) то и любое число, представимое формой будет представимое и формой .

Предложение 3 доказано.

Определение 5. Классом форм называется множество всех бинарных квадратичных форм, собственно эквивалентных форме .

В силу предложения 2 и определения 5 можно сказать, что множество бинарных квадратичных форм данного дискриминанта распадается на классы форм, собственно эквивалентных относительно унимодулярного целочисленного преобразования переменных (2).

Далее, в зависимости от знака дискриминанта бинарные квадратичные формы делятся на определенные и неопределенные формы.

Определение 6. Квадратичная форма дискриминанта называется определенной, если и неопределенной, если . Такое определение подсказано тем, что при бинарная квадратичная форма принимает значения только одного знака (положительные при и отрицательные при ), а при она принимает как положительные, так и отрицательные значения. Теория неопределенных бинарных квадратичных форм существенно отличается от теории определенных форм и мы будем рассматривать в данной работе только неопределенные формы.

Рассмотрим теперь вкратце теорию приведения неопределенных бинарных квадратичных форм. Суть этой теории состоит в выделении в каждом классе так называемых приведенных форм - «стандартных» форм класса. Рассматривая квадратичные формы положительного дискриминанта будем считать ее коэффициенты произвольными вещественными числами. Кроме того будем предполагать, что крайние коэффициенты и формы отличны от нуля и корни уравнения вещественны, различны и иррациональны.

Назовем корень этого уравнения первым, а - вторым корнем формы (см. [1]), причем есть дискриминант формы .

Определение 7. Неопределенная квадратичная форма

с корнями называется приведенной, если .

Покажем, что у приведенной формы выполняются неравенства , , причем и заключаются между и . В самом деле, из условия получаем

,

, , .

Далее, , , т.е. выполняется указанное неравенство . Обратимся теперь к условиям

и . Из них следуют

, (*)

Аналогично имеем

, (**)

Покажем теперь, что . Допустим, что . Тогда из неравенств (*) и (**) следуют

и .

Но последние два неравенства не могут одновременно выполняться. Значит, наше допущение, что неверно и мы получаем неравенства . Наконец, покажем, что

и .

Т.к. , то из неравенств (*) и (**) получаем . С учетом этих неравенств и равенства , мы получим и неравенства для .

Обратно, система неравенств

или

характеризует приведенность неопределенной формы . Поэтому определению приведенной формы можно придать следующий вид. Определение 8. Бинарная квадратичная форма дискриминанта называется приведенной, если

или

Без доказательства приведем следующее свойство приведенных форм.

Предложение 4. Каждая форма дискриминанта собственно эквивалентна некоторой приведенной форме.

Доказательство см. [1,2]. В [1] используется аппарат непрерывной дроби, а в [2] понятие соседней формы.

Определение 9. Целочисленная квадратичная форма называется собственно примитивной, если наибольший общий делитель ее коэффициентов равен , т.е.

НОД и несобственно примитивной, если

НОД . В остальных случаях форма называется не примитивной.

Характеристики

Тип файла
Документ
Размер
1013 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее