84341 (675769)

Файл №675769 84341 (Линейное и динамическое программирование)84341 (675769)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Линейное программирование.

Задача линейного оптимального планирования - один из важнейших математических инструментов, используемых в экономике. Рассмотрим предприятие, которое из m видов ресурсов производит n видов продукции.

Примем следующие обозначения:

i - номер группы ресурса (i=1,2, ..., m);

j - номер вида продукции (j=1,2, ..., n);

aij - количество единиц i-го ресурса, расходуемое на производство одной единицы j-го вида продукции;

bij - запасы i-ro ресурса ;

xi планируемое количество единиц j-й продукции;

cj -прибыли от реализации одной единицы j-го вида продукции;

X=(x1, x2,…, xn) - искомый план производства, называется допустимым если имеющихся ресурсов достаточно. называется допустимым если имеющихся ресурсов достаточно.

Рассматриваемая задача состоит в нахождении допустимого плана, дающего максимальную прибыль из всех допустимых решения подобных задач, называемых задачами линейного программирования.

Предположим, что предприятие может выпускать четыре вид продукции, используя для этого три вида ресурсов. Известна технологически матрица А затрат любого ресурса на единицу каждой продукции, вектор В объемов ресурсов и вектор С удельной прибыли

48 30 29 10 удельные прибыли

нормы расхода 3 2 4 3 198

2 3 1 2 96

6 5 1 0 228

запасы ресурсов

Обозначим х1, х2, х3, х4 - число единиц 1-й, 2-й, 3-й, 4-й продукции, которые планируем произвести. При этом можно использовать только имеющиеся запасы ресурсов. Целью является получение максимальной прибыли. Получаем следующую математическую модель оптимального планирования:

L(x1,x2,x3,x4)=48xl+30x2+29x3+10x4 max

1+2х2+4х3+3х4≤198

1+3х2+1х3+2х4≤96

1+5х2+1х3+0х4≤228

xj≥0, jєN4

Для решения полученной задачи в каждое неравенство добавим неотрицательную переменную. После этого неравенства превратятся в равенства, в силу этого добавляемые переменные называются базисными. Получается задача ЛП на максимум, все переменные неотрицательны, все ограничения есть равенства и есть базисный набор переменных: х5 - в 1-м равенстве, х6 - во 2-м и х7 - в 3-м. Теперь можно запускать симплекс-метод.

L(x1,x2,x3,x4)=48xl+30x2+29x3+10x4 max

1+2х2+4х3+3х4+x5 =198

1+3х23+2х4 +x6 =96

1+5х23 +x7=228

xj≥0, jєN7

Таблица N 1

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

0

x5

198

3

2

4

3

1

0

0

0

x6

96

2

3

1

2

0

1

0

0

x7

228

6

5

1

0

0

0

1

0

-48

-30

-29

-10

0

0

0

Если все оценочные коэффициенты (серый цвет) неотрицательны, то получено оптимальное решение: базисные переменные равны свободным членам, остальные равны 0. Если же есть отрицательный оценочный коэффициент, то находят самый малый из них. Если в столбце коэффициентов над ним нет положительных, то задача не имеет решения. Задача оптимального планирования не может быть таковой, поэтому ищут минимальное отношение свободных членов столбца Н к положительным коэффициентам указанного xj. В пересечении строки и столбца получаем разрешающий элемент и затем строим новую таблицу.

Таблица N 2

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

0

х5

84

0

31/2

3

1

0

-3/6

0

x6

20

0

11/3

2/3

2

0

1

-2/6

48

х1

38

1

5/6

1/6

0

0

0

1/6

1824

0

10

-21

-10

0

0

-8

Таблица N 3

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

29

х3

24

0

-1/7

1

6/7

2/7

0

-1/7

0

x6

4

0

13/7

0

13/7

-4/21

1

-5/21

48

х1

34

1

6/7

0

-1/7

-1/21

0

4/21

2328

0

7

0

8

6

0

5

Оптимальное решение (производственная программа): Xоpt=(34; 0; 22; 0); максимум целевой функции равен 2328.

Значение переменной с номером i большим 4-х есть остаток (i-4)-ro ресурса. 'Гак как все оценочные коэффициенты неотрицательны, то получено оптимальное решение: базисные переменные равны свободным членам, остальные равны 0.

Следует обратить внимание на экономический смысл элементов послед­ней строки последней симплексной таблицы. Например, коэффициент Δ2=7 при переменной х2 показывает, что если произвести одну единицу продукции второго вида (она не входит в оптимальную производственную программу), то прибыль уменьшится на 7 единиц.

Заметим, что в рассматриваемом примере ли­нейной производственной задачи возможна самопроверка результата.

Воспользуемся тем, что в оптимальной производственной программе х2=0, х4=0. Предположим, что вторую и четвертую продукции мы не намеревались выпускать с самого начала. Рассмотрим задачу с оставшимися двумя перемен­ными, сохранив их нумерацию. Математическая модель задачи будет выглядеть следующим образом:

L(x1,x3)=48xl+29x3 max

1+4х3≤198

1+ х3 ≤ 96

1+ х3≤228

x1≥0, x3≥0

Задачу линейного программирования с двумя переменными можно решить графически. Возьмем на плоскости систему координат: ось OX3 направим горизонтально и вправо, ось OХ1 -вертикально и вверх. Каждое ограничение задачи, раз оно линейное нестрогое неравенство, графически изображается полуплоскостью, граничная прямая которой соответствует уже не неравенству, а равенству. Допустимое множество задачи является пересечением всех этих полуплоскостей и есть выпуклый многоугольник. Вторая из двух основных теорем линейного программирования гласит: Если экстремум целевой функции достигается на допустимом множестве, то функция принимает его в какой-то вершине многоугольника-допустимого множества. Исходя из этой теоремы, найти искомый экстремум можно просто перебрав вершины многоугольника и определив ту, в которой значение функции экстремально. Чаще делают по-другому: строят линию уровня целевой функции и двигают ее параллельно в направлении экстремума, стараясь уловить последнюю точку пересечения линии с допустимым множеством.

Двойственная задача линейного программирования

Задача линейного оптимального планирования - исходная в своей паре симметричных двойственных задач. Вообще же другая задача в двойственной паре строится так:

1)меняется тип экстремума целевой функции (mах на min и наоборот);

2)коэффициенты целевой функции одной задачи становятся свободными членами другой задачи;

Характеристики

Тип файла
Документ
Размер
521 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее