84341 (675769), страница 3

Файл №675769 84341 (Линейное и динамическое программирование) 3 страница84341 (675769) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

ij=pi+qj-cij , iNm, jNn

Положим, что p1=0. Ос­тальные потенциалы находим из условия, что для базисных клеток ij=0. В данном случае получаем

11=0, p1+q1-c11=0, 0+q1-3=0, q1=3

21=0, p2+q1-c21=0, p2+3-2=0, p2= -1

23=0, p2+q3-c23=0, -1+q3-1=0, q3=2

аналогично, получим: q2=4, р3=-1, q4=5, q5=1.

Затем вычисляем оценки всех свободных клеток:

12=p1+q2-c12=0+4-6= -2

13=p1+q3-c13=0+2-4=-2

14=2; 15=1; 24=1; 25=0; 31= -4; 32= -2

Находим наибольшую положительную оценку:

mах(ij >0)=2=14,

Для найденной свободной клетки 14 строим цикл пересчета - замкнутую ломаную линию, соседние звенья которой взаимно перпендикулярны, сами зве­нья параллельны строкам и столбцам таблицы, одна из вершин находится в данной свободной клетке, а все остальные - в занятых клетках. Это будет 14-34-33-23-21-11. Производим перераспределение поставок вдоль цикла пересчета:

40

*

40-

33

7

8

30

7

8+

7-

15

30

22

40

22+

40-

29

33

max=7

Получаем второе базисное допустимое решение:

Таблица 2

Потребл

Произв

b1=48

b2=30

b3=29

b4=40

b5=8

a1=40

33 3

6

4

7 3

0

p1=0

a2=45

15 2

30 3

1

3

0

p2=-1

a3=70

6

* 5

29 1

33 4

8 0

p3=1

q1=3

q2=4

q3=0

q4=3

q5= -1

Находим новые потенциалы. Новые оценки:

12= -2; 13= -4; 15= -1; 23= -2; 24= -1; 25= -2; 31= -2; 32=0. Поскольку все ij0 решение является оптимальным:

33 0 0 7

Xоpt1 = 15 30 0 0

0 0 29 33

Однако, так как оценка клетки 32=0, делаем вывод о наличие другого возможного оптимального решения. Для его нахождения строим цикл пересчета клетки 32: 32-22-21-11-14-34, производим перераспределение:

Таблица 3

Потребл

Произв

b1=48

b2=30

b3=29

b4=40

b5=8

a1=40

3 3

6

4

37 3

0

p1=0

a2=45

45 2

3

1

3

0

p2=-1

a3=70

6

30 5

29 1

3 4

8 0

p3=1

q1=3

q2=4

q3=0

q4=3

q5= -1

Находим новые потенциалы. Получаем рi и qj соответственно равные потенциалам первого базисного оптимального решения (см. табл. 2). Исходя из этого max=32, однако элемент с индексом 32 уже присутствует в базисе, поэтому пересчет не имеет смысла. Таким образом получаем второе и последнее базисное оптимальное решение:

3 0 0 37

Xоpt2 = 45 0 0 0

0 30 29 3

Оптимальное распределение инвестиций

Данная задача с n переменными представляется, как многошаговый процесс принятия решений. На каждом шаге определяется экстремум функции только по одной переменной.

Пусть 4 фирмы образуют объединение. Рассмотрим задачу распределения инвестиций в размере 700 тыс. рублей по этим 4 фирмам. Размер инвестиций пусть будет кратен 100 тыс. рублей. Эффект от направления i-й фирме инвестиций в размере ξ (сотен тыс. рублей) выражается функцией fi(xi). Приходим к задаче fl(xl)+f2(x2)+f3(x3)+f4(x4)max , где xi - пока еще неизвестный размер х1234≤7; х1234≥0 инвестиций i-й фирме. Эта задача решается методом динамического программирования: последовательно ищется оптимальное распределение для k=2,3 и 4 фирм.

Пусть первым двум фирмам выделено ξ инвестиций. обозначим z2(ξ) величину инвестиций 2-й фирме, при которой сумма f2(z2j)+fl(ξ-z2j), 0≤j≤ ξ максимальна, саму эту максимальную величину обозначим F2(ξ). Далее действуем также: находим функции z3 и F3 и т.д. На k-ом шаге для нахождения Fk(ξ) используем основное рекуррентное соотношение: Fk(ξ)=max{fkjk)+F(k-1)( ξ-хk); 0 ≤ хk ≤ ξ

xj

0

100

200

300

400

500

600

700

f1

0

28

45

65

78

90

102

113

f2

0

25

41

55

65

75

80

85

f3

0

15

25

40

56

62

73

82

f4

0

20

33

42

48

53

56

58

Таблица 1


x2

ξ-х2

0

100

200

300

400

500

600

700

F1(ξ-x2)

f2(x2)

0

28

45

65

78

90

102

113

0

0

0

28

45

65

78

90

102

113

100

25

25

53

70

90

103

115

127

200

41

41

69

86

106

119

131

300

55

55

83

100

120

133

400

65

65

93

110

130

500

75

75

103

120

600

80

80

108

700

85

85

Жирным цветом обозначен максимальный суммарный эффект от выделения соответствующего размера инвестиций по 2-м предприятиям.

ξ

0

100

200

300

400

500

600

700

F2

0

28

53

70

90

106

120

133

x2

0

0

100

100

100

200

300

300

Таблица 2


х3

ξ-х2

0

100

200

300

400

500

600

700

F3(ξ-x3)

f3(x3)

0

28

53

70

90

106

120

133

0

0

0

28

53

70

90

106

120

133

100

15

15

43

68

85

105

121

135

200

25

25

53

78

95

115

131

300

40

40

68

93

110

130

400

56

56

84

109

125

500

62

62

90

115

600

73

73

101

700

82

82

Жирным цветом обозначен максимальный суммарный эффект от выделения соответствующего размера инвестиций по 3-м предприятиям.

ξ

0

100

200

300

400

500

600

700

F2

0

28

53

70

90

106

121

135

x2

0

0

0

0

0

0

100

100

Таблица 3


x4

ξ-х4

0

100

200

300

400

500

600

700

F4(ξ-x4)

f4(x4)

0

28

53

70

90

106

121

135

0

0

135

100

20

141

200

33

139

300

42

132

400

48

118

500

53

106

600

56

84

700

58

58

Жирным цветом обозначен максимальный суммарный эффект от выделения соответствующего размера инвестиций по 4-м предприятиям.

Характеристики

Тип файла
Документ
Размер
521 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее