31056-1 (675611), страница 7

Файл №675611 31056-1 (Рациональные уравнения и неравенства) 7 страница31056-1 (675611) страница 72016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Следовательно, х = а – одно из решений неравенства Р(х) + Т(х) > Q(x) + T(x). Поэтому, если х =а есть решение первого неравенства, то это значение есть также решение второго неравенства.

б) Пусть х = b – одно из решений неравенства Р(х) + Т(х) > Q(x) + T(x), т.е. P(b) + T(b) > Q(b) + T(b) –верное числовое неравенство. По свойству числовых неравенств P(b) > Q(b) – тоже верное числовое неравенство. Следовательно, х = b – решение неравенства P(x) > Q(x).

Так как множества решений неравенства P(x) > Q(x) и P(x) + T(x) > > Q(x) + T(x) совпадают, то эти неравенства равносильные.

Свойство 2. Если в неравенстве любое слагаемое, которое имеет смысл при вех хR, перенести из одно части в другую с противоположным знаком, то получим неравенство, равносильно данному.

Дано. P(x) + T(x) > Q(x) – неравенство, Т(х) – слагаемое, которое имеет смысл при всех хR.

Доказать. Неравенства P(x) + T(x) > Q(x) и P(x) > Q(x) – T(x) – равносильные.

Доказательство. По свойству 1 можно к обеим частям неравенства P(x) + T(x) > Q(x) прибавить слагаемое (-Т(х)), так как это слагаемое имеет смысл при всех хR; получим равносильное неравенство:

P(x) + T(x) – T(x) > Q(x) – T(x), отсюда P(x) > Q(x) – T(x).

Свойство 3. Если обе части неравенства умножить на одно и то же положительное число или на одно и то же выражение, положительное при всех значениях переменной, то получим неравенство, равносильное данному.

Дано. P(x) > Q(x) – неравенство (1),

T(x) > 0, xR,

P(x)T(x) > Q(x)T(x) – неравенство (2).

Доказать. Неравенства (1) и (2) равносильные.

Доказательство. Пусть при х = а P(a) > Q(a) – верное числовое неравенство, т.е. х = а – одно из решении первого неравенства. T(a) – значение Т(х) при х = а Т(а) > 0.

По свойству числовых неравенств P(a)T(a) > Q(a)T(a) – тоже верное числовое неравенство, т.е. х = а –одно из решении первого неравенства. Следовательно, если х= а – решение первого неравенства, то х = а – также решение второго неравенства.

Пусть при х = b неравенство P(b)T(b) > Q(b)T(b) – верное числовое неравенство, т.е. х = b – одно из решении второго неравенства.

По свойству числовых неравенств P(b) > Q(b) – тоже верное числовое неравенство, так как T(b) > 0. Следовательно, х = b – одно из решении первого неравенства.

Поскольку множества решении первого и второго неравенств совпадают, то они равносильные.

Свойство 4. Если обе части неравенства умножить на одно и то же отрицательное число или на одно и то же выражение, отрицательное при всех значениях переменной, и изменить знак неравенства на противоположный, то получим неравенство, равносильное данному.

Это свойство доказывается аналогично 3 свойству.

Алгебраические неравенства.

Линейными (строгими и нестрогими) называются неравенства вида

ax + b > 0, ax + b < 0, ax + b 0, ax + b 0, a 0,

решениями которых будут:

при a > 0

x(- ; ), x( -; - ), x[ - ; ), x( -; - ],

при а < 0

x( -; - ), x( - ; ), x( -; - ], x[ - ; ).

Квадратными (строгими и нестрогими) называются неравенства вида

ax2 + bx + c > 0, ax2 + bx + c < 0,

ax2 + bx + c 0, ax2 + bx + c 0,

где a, b, c некоторые действительные числа и а 0.

Квадратное неравенство ax2 + bx + c > 0 в зависимости от значении своих коэффициентов a, b и c имеет решения:

при а > 0 и D = b2 – 4ac 0

x( -; )( ; );

при а > 0 и D < 0 x любое действительное число;

при а < 0 и D 0

x( ; );

при а < 0 и D < 0

x = (т. е. решении нет ).

Решение неравенства ax2 + bx + c < 0 сводится к решению рассмотренного неравенства, если обе части неравенства умножить на (-1).

Метод интервалов.

Пусть Рn(x) многочлен n-й степени с действительными коэффициентами, а c1, c2, , ci все действительные корни многочлена с кратностями k1, k2, , ki соответственно, причем с1 > c2 > > ci. Многочлен Pn(x) можно представить в виде

Рn(x) = (x - c1) k1(x - c2) k2 (x – ci)ki Qm(x), (3)

где многочлен Qm(x) действительных корней не имеет и либо положителен, либо отрицателен при всех хR. Положим для определенности, что Qm(x) > 0. Тогда при х > c1 все сомножители в разложении (3) положительны и Рn(х) > 0. Если с1 корень нечетной кратности (k1 нечетное), то при х(с2; с1) все сомножители в разложении (3), за исключением первого, положительны и Рn(х)<0. В этом случае говорят, что многочлен Рn(х) меняет знак при переходе через корень с1. Если же с1 корень четной кратности (k1 четное), то все сомножители (в том числе и первый) при х(с2; с1) положительны и, следовательно, Рn(х) > 0 при х(c2; с1). В этом случае говорят, что многочлен Рn(х) не меняет знак при переходе через корень с1.

Аналогичным способом, используя разложение (3), нетрудно убедится, что при переходе через корень с2 многочлен Рn(х) меняет знак, если k2 нечетное, и не меняет знака, если k2 четное. Рассмотренное свойство многочленов используется для решения неравенств методом интервалов. Для того чтобы найти все решения

Рn(х) > 0, (4)

достаточно знать все действительные корни многочлена Рn(х) их кратности и знак многочлена Рn(х) в произвольно выбранной точке, не совпадающей с корнем многочлена.

Пример: Решить неравенство

х4 + 3х3 – 4х > 0. (*)

Решение. Разложим на множители многочлен Р4(х), стоящий в левой части неравенства (*). Вынося множитель х за скобку, получаем

Р4(х) = х(х3 + 3х2 – 4).

Второй сомножитель, представляющий собой кубический многочлен, имеет корень х = 1. Следовательно, он может быть представлен в виде

х3 + 3х2 – 4 = (х-1)(х2 + 4х + 4) = (х-1)(х + 2) 2.

Таким образом, Р4(х) = х(х - 1)(х + 2) 2 и неравенство (*) может быть записано в виде

х(х –1)(х + 2)2 > 0. (**)

Решим неравенство (**) методом интервалов. При х > 1 все сомножители, стоящие в левой части неравенства, положительны.

Рис. 1

Будем двигаться по оси Ох справа налево. При переходе через точку х = 1 многочлен Р4(х) меняет знак и принимает отрицательные значения, так как х = 1 простой корень (корень кратности 1); при переходе через точку х = 0 многочлен также меняет знак и принимает положительные значения, так как х = 0 также простой корень; при переходе через точку х = -2 многочлен знака не меняет, так как х = -2 корень кратности 2. Промежутки знакопостоянства многочлена Р4 (х) схематически представлены на рис 1. Используя этот рисунок, легко выписать множество решений исходного неравенства.

Ответ. х (-; -2) (-2; 0) (1; ).

Пример: Решить неравенство

2 – 3х – 2)(х2 – 3х + 1) < 10.

Решение: Пусть х2 – 3х – 2 = y. Тогда неравенство примет вид y(y +3) < 10, или y2 + 3y – 10 < 0, откуда (y + 5)(y – 2) < 0. Решением этого неравенства служит интервал –5

x 2 – 3x – 2 < 2, x2 – 3x – 4 < 0,

или

x2 – 3x –2 > -5, x2 – 3x + 3 > 0,

откуда

( x – 4)(x + 1) < 0,

(x + )2 + > 0.

Поскольку второе неравенство выполняется при всех х, решение этой системы есть интервал (-1; 4).

Ответ: (-1; 4).

Пример: Решить неравенство

х4 – 34х2 + 225 < 0.

Решение. Сначала решим биквадратное уравнение х4 – 34х2 + 225 < 0. Полагая х2 = z, получаем квадратное уравнение z2 – 34z + 225 = 0, из которого находим: z1 = 9 и z2 = 25. Решая уравнения х2 = 9 и х2 = 25, получаем 4 корня биквадратного уравнения: -3, 3, -5, 5. Значит, х4 – 34х2 + 225 = (х + 5)(х + 3)(х – 3)(х – 5), и поэтому заданное неравенство иммет вид:

(х + 5)(х + 3)(х – 3)(х – 5) < 0.


Изображаем на координатной прямой точки –5, -3, 3, 5 и проводим кривую знаков. Решение неравенства является объединение интервалов (-5; -3) и (3; 5).

Ответ: (-5; -3)(3; 5).

Пример: Решить неравенство

х4 – 3 < 2х(2х2 – х – 2).

Решение. Дано целое рациональное неравенство. Перенесем все слагаемые в левую часть и приведем многочлен к стандартному виду. Получим равносильное неравенство

х4 – 4х3 + 2х2 + 4х – 3 < 0.

Решая уравнение х4 – 4х3 + 2х2 + 4х – 3 = 0, находим корни х1 = -1, х2,3 = 1, х4 = 3. Тогда неравенство можно переписать в виде

(х – 1) 2(х + 1)(х – 3) < 0.

Найденные корни разбивают числовую ось на четыре промежутка, на каждом из которых левая часть неравенства, а значит, и исходного неравенства сохраняет знак. Выбирая пробные точки в каждом из промежутков (достаточно значения х подставлять только в последний два сомножителя), получаем знаки, указанные на рисунке. Видим, что неравенство выполняется на промежутках (-1; 1) и (1; 3).

Так как неравенство строгое, то числа –1, 1, 3 не входят в решение неравенства.

Ответ: (-1; 1)(1; 3).

Дробно-рациональные неравенства.

Решение рационального неравенства

> 0 (5)

где Рn(х) и Qm(х) многочлены, сводится к решению эквивалентного неравенства (4) следующим образом: умножив обе части неравенства (5) на многочлен [Qm(x)]2, который положителен при всех допустимых значениях неизвестного х (т.е. при тех х, при которых Qm(x) 0), получим неравенство

Рn(х) Qm(x) > 0,

эквивалентное неравенству (5).

Дробно-линейным называется неравенство вида

>

(6)

k

где a, b, c, d, k некоторые действительные числа и с 0, (если с = 0, то дробно-линейное неравенство превращается в линейное, неравенство (6) не содержит аргумента). К дробно-линейным неравенствам относятся и неравенства вида (6), где вместо знака > стоят знаки <, , . Решение дробно-линейного неравенства сводится к решению квадратного неравенства. Для этого необходимо умножить обе части неравенства (6) на выражение (сх + d)2, положительное при всех хR и x -d/c.

Пример: Решить неравенство

< -1.

Решение: Прибавляя к обеим частям неравенства 1, получим неравенство вида (5).

< 0,

которое эквивалентно неравенству

х22 – х – 2) < 0.

Множество решений последнего неравенства находится методом интервалов: х( -1;0)(0;2).

Ответ: х(-1;0)(0;2).

Пример: Решить неравенство

.

Решение: Перенеся все члены неравенства в левую часть, получим

- - 0, или 0, откуда 0.

Пользуясь методом интервалов и учитывая знак неравенства, заключаем, что решением неравенства является объединение полуинтервалов: [-4; -3)(-1; 1].

Ответ: [-4; -3)(-1; 1].

Пример: Решить неравенство:

0.

Решение: Полагая х 0 и х 3, разделим обе части неравенства на положительную дробь и получим и сразу заметим, что х = 0 удовлетворяет заданному неравенству, а х = 3 не удовлетворяет. Кроме того, множители с нечетными показателями степени заменим соответствующими множителями первой степени (ясно, что при этом знак выражения в левой части неравенства не изменится). В результате получим более простое неравенство, равносильное заданному для всех х0 и х3:

0.

Начертив кривую знаков, заштрихуем промежутки удовлетворяющие этому неравенству, и отметим на той же оси точки х = 0 и х = 3. Учитывая, что значение х = 0 является решением заданного неравенства, но не принадлежит заштрихованному промежутку, его следует дополнительно включать в ответ. Значение х = 3 не является решением неравенства, но принадлежит заштрихованному промежутку; следовательно, это значение нужно исключить. Итак, получаем ответ: (-; -4)[1; 3) (3; 4,5]U0.

Ответ: (-; -4)[1; 3)(3; 4,5]U0.

Пример: Решить неравенство

< 0.

Решение. Разлагая числитель и знаменатель на множители, переписываем данное неравенство в виде

< 0.

Т очками, в которых множители меняют знаки, являются –5, 1, 2, 6. Они разбивают числовую ось не интервалы (-; -5), (-5; 1), (1; 2), (2; 6),(6; +). С помощью кривой знаков находим интервалы, где выполняется неравенство: (-5; 1) и (2; 6). При этом из (-5; 1) надо удалить точку 0, так как в этой точке выражение обращается в нуль. Итак, получаем ответ в виде (-5; 0)(0; 1)(2; 6).

Ответ: (-5; 0)(0; 1)(2; 6).

Пример: Решить неравенство

< 0.

Решение. Разлагая числитель и знаменатель на множители, перепишем данное неравенство в виде

< 0.

Нанесем числа 0, 1, 2, 5, при которых числитель и знаменатель обращаются в нуль, на числовую ось. Они разбивают числовую ось на пять промежутков.

С помощью “пробных” точек найдем знак выражения в каждом промежутке.

Выпишем интервалы, где выполняется неравенство: (-; 0), (0; 1), (2; 5).

Ответ: (-; 0)(0; 1)(2; 5).

Характеристики

Тип файла
Документ
Размер
1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7034
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее