31056-1 (675611), страница 5

Файл №675611 31056-1 (Рациональные уравнения и неравенства) 5 страница31056-1 (675611) страница 52016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Ответ: Если a = 1, то x — любое число; a = 1, то нет решений; если a 1, то x = 1 / (a 1).

Пример 10.46. При каких a уравнение ax2 x + 3 = 0 имеет единственное решение?

Решение. Прежде всего обратим внимание на распространённую ошибку: считать исходное уравнение квадратным. На самом деле это уравнение степени, не выше второй. Пользуясь этим соображением, естественно начать решение, рассмотрев случай, когда a = 0, то очевидно данное уравнение имеет единственное решение. Если же a 0, то имеем дело с квадратным уравнением. Его дискриминант 1 12a принимает значение, равное нулю, при a = 1 / 12.

Ответ: a = 0 или a = 1 / 12.

Пример 10.47. при каких a уравнение (a 2)x2 + (4 2a)x + 3 = 0 имеет единственное решение?

Решение. Понятно, что надо начинать со случая a = 2. Но при a = 2 исходное уравнение вообще не имеет решений. Если a 2, то данное уравнение — квадратное, и, казалось бы, искомые значения параметра — это корни дискриминанта. Однако дискриминант обращается в нуль при a = 2 или a = 5. Поскольку мы установили, что a = 2 не подходит, то

Ответ: a = 5.

Вероятно, в двух последних примерах ничего сложного нет (тем более, ели они уже решены). Однако, на наш взгляд, параметр в этих задачах проявляет своё “коварство”, особенно для начинающих. Поэтому полезно рассмотреть ещё несколько примеров, где параметр “расставляет ловушки”.

Пример 10.48. При каких значениях a уравнение ax2 + 4x + a + 3 = 0 имеет более одного корня?

Решение. При a = 0 уравнение имеет единственный корень, что не удовлетворяет условию. При a0 исходное уравнение, будучи квадратным, имеет два корня, если его дискриминант 16 4a2 12a — положительный. Отсюда получаем 4 < a < 1. Однако в полученный промежуток (4; 1) входит число 0, которое, как мы уже проверили, неприемлемо.

Ответ: 4 < a < 0 или 0 < a < 1.

Пример 10.49. При каких a уравнение a(a + 3)x2 + (2a + 6)x 3a 9 = 0 имеет более одного корня?

Решение. Стандартный шаг — начать со случаев a = 0 и a = 3. При a = 0 уравнение имеет единственное решение. Любопытно, что при a = 3 решением уравнения служит любое действительное число. При a = 3 решением уравнения служит любое действительное число. При a 3 и a 0, разделив обе части данного уравнения на a + 3, получим квадратное уравнение ax2 + 2x 3 = 0, дискриминант которого 4(1 + 3a) положителен при a > 1 / 3. Опыт предыдущих примеров подсказывает, что из промежутка (1 / 3; ) надо исключить точку a = 0, а в ответ не забыть включить a = 3.

Ответ: a = 3 или 1 / 3 < a < 0, или a > 0.

Пример 10.50. При каких значениях a уравнение (x2 ax + 1) / (x + 3) = 0 имеет единственное решение?

Решение. Данное уравнение равносильно системе

x 2 ax + 1 = 0,

x 3.

Наличие квадратного уравнения и условие единственности решения, естественно приведут к поиску корней дискриминанта. Вместе с тем условие x 3 должно привлечь внимание. И “тонкий момент” заключается в том, что квадратное уравнение системы может иметь два корня! Но обязательно только один из них должен равняться 3. Имеем D = a2 4, отсюда D = 0, если a = 2; x = 3 — корень уравнения x2 ax + 1 = 0 при a = 10 / 3, причём при таком значении a второй корень квадратного уравнения отличен от 3.

Ответ: a = 2 или a = 10 / 3.

Пример 10.51. При каких a уравнение ax2 = a2 равносильно неравенству

x 3 a?

Решение. При a 0 уравнение имеет единственное решение, а неравенство — бесконечно много. Если a = 0, то решением как уравнения, так и неравенства является всё множество действительных чисел. Следовательно, требованию задачи удовлетворяет только a = 0.

Ответ: a = 0.

Пример 10.52. Решить уравнение с параметрами

(a2 9)x = a2 + 2a 3.

Решение. Уравнение имеет смысл при любых значениях параметра. Запишем уравнение в виде:

(a 3)(a + 3)x = (a + 3)(a 1).

Если a = 3, то уравнение принимает вид: 0x = 0. Отсюда следует, что при x R, т.е. решением уравнения является любое действительное число. Если a 3, то уравнение принимает вид: (a 3)x = a 1.При a = 3 имеем 0x = 2. Уравнение решения не имеет. При a 3 имеем x = (a 1) / (a 3). Уравнение имеет единственное решение (например, x = 3 при a = 4, x = 3 / 5 при a= 2 и т.д.)

Ответ: a = 3, x R; a = 3, x ; a 3, x = (a 1) / (a 3).

Пример 10.53.

(x 4) / (x + 1) 1 / a(x + 1) = 2 / a.

Решение. Очевидно, (x + 1)a 0, т.е. x 1, a 0. Преобразуем данное уравнение, умножив обе его части на a(x + 1) 0:

(x 4)a 1 = 2(x + 1), т.е. (a + 2)x = 4a 1.

Если a = 2, то имеем 0х = 9. Следовательно, x . Если a 2, то x = (4a +1) / (a + 2). Но, как мы уже отметили, x 1. Поэтому надо проверить, нет ли таких значений a при которых найденное значение x равно 1.

(4a 1) / (a + 2) = 1, т.е. 4a 1 = a 2, т.е. 5a = 1, a= 1 / 5.

Значит, при a 0, a 2, a 1 / 5 уравнение имеет единственное решение (4a 1) / (a + 2).

Ответ: x при a {2, 0, 1 / 5}; x = (4a 1) / (a + 2) при a {2, 0, 1 / 5}.

Пример 10.54.

(a 5)x2 + 3ax (a 5) = 0.

Решение. При (a 5) = 0, т.е. a = 5 имеем 15x 0 = 0, т.е. x = 0. При a 5 0, т.е. a 5 уравнение имеет корни

X1,2 = (3a (9a2 + 4(a 5)2)) / (2(a 5)).

Ответ: x = 0 при a = 5; x = (3a (9a2 + 4(a 5)2)) / (2(a 5)) при a 5.

Пример 10.55.

1 / (x 1) + 1 / (x a) = (a + 1) / a.

Решение. Отмечаем, что a(x 1)(x a) 0, т.е. x 1, x a, a 0. При этих условиях данное уравнение после упрощений принимает вид

(a + 1)x2 (a2 + 4a + 1)x + (2a2 + 2a) = 0.

Если a +1 = 0, т.е. a = 1, имеем, 2x = 0, т.е. x = 0.

Если a + 1 0, т.е. a 1, то находим, что

x1,2 = (a2 + 4a + 1 (a4 + 2a2 + 1)) / (2(a +1) = (a2 + 4a + 1 (a2 + 1) ) / (2(a + 1))

т.е. x1 = a + 1, x2 = 2a / (a + 1). Найдём значения a, при которых x = 1 и x = a, чтобы исключить их.

a + 1 = 1 a = 0 — недопустимо по условию;

a + 1 = a 1 = 0 — невозможно;

2 / (a + 1) = 1 2a = a + 1, т.е. a = 1;

2 / (a + 1) = a 2a = a2 + a, a = 1 и a = 0 — недопустимо.

Итак, если a 1, a 0, a 1, то x1 = a + 1, x2 = 2a / (a + 1).

Теперь рассмотрим, что происходит с уравнением при a = 1. Найдём корни уравнения: x1 = 1 и x2 = 2, причём x1 = 1 не подходит по условию. Теперь выписываем

Ответ: x1 = a + 1 и x2 = 2 при a 0, a 1; x = 0 при a = 1; x = 2 при a = 1.

Пример 10.56. При каких значениях a система уравнений

a xy + x y + 1,5 = 0,

x + 2y + xy + 1 = 0.

Имеет единственное решение?

Решение. Умножим второе уравнение на a и вычтем его из первого уравнения. Получаем равносильную систему

a xy + x y + 1,5 ax 2ay axy a = 0,

x + 2y + xy + 1 = 0, т.е.

( 1 a)x (2a + 1)y + 1,5 a = 0,

x + 2y + xy + 1

  1. Если a = 1, то 3y + 0,5 = 0, т.е. y = 1 /6. Подставив это значение во второе уравнение, находим единственное значение x. Система имеет единственное решение.

  2. Если a = 0,5, то система имеет единственное решение.

  3. При остальных значениях a сведём систему к квадратному уравнению; из первого уравнения системы находим

y = ((1 a)x + 1,5 a) / (2a + 1),

подставляем во второе уравнение:

x + ((2 2a)x + 3 2a) / (2a + 1) + ((1 a)x2 + 1,5x ax) / (2a + 1) +1 = 0, т.е.

2ax + 3x 2ax + 3 2a + x2 ax2 +1,5x ax + 2a + 1 = 0,

(1 a)x2 + (4,5 a)x + 4 = 0.

Уравнение имеет единственное решение в том случае, когда дискриминант равен нулю:

(9 / 2 a)2 4 4(1 a) = 0, т.е. a2 + 7a + 17 / 4 = 0, т.е. a = (7 42) / 2.

Ответ: a = 1, a = 1 / 2, a = (7 42) / 2.

Пример 10.57.

x3 – (a + b + c)x2 + (ab + ac + bc)x – abc =0.

Решение. x3 – ax2 – bx2 – cx2 + abx + acx +bcx – abc = 0,

группируем: x2(x – a) – bx(x – a) – cx(x – a) – cx(x – a) + bc(x – a),

(x – a)(x2 – bc – cx + bc).

(x – a) = 0,

x1 = a.

x2 – bc – cx + bc = 0,

x(x – b) – c(x – b) = 0,

(x – b)(x – c) = 0,

x – b = 0, x2 = b

x – c = 0, x3 = c.

Ответ: x1 = a; x2 = b; x3 = c.

Замечание: корни уравнения можно было легко найти, пользуясь теоремой Виета для кубического уравнения:

если x3 + px2 + qx + r = 0, то

x1 + x2 + x3 = - p,

x1x2 + x1x3 + x2x3 = q,

x1x2x3 = - r .

В нашем случае:

x1 + x2 + x3 = a + b + c,

x1x2 + x1x3 + x2x3 = ab + bc +cd,

x1x2x3 = abc.

Отсюда следует, что x1 = a; x2 = b; x3 = c.

Графический метод решения систем нелинейных уравнений.

Системы нелинейных уравнений с двумя неизвестными можно решать графически. Для этого нужно начертить графики обоих уравнений и найти координаты точек их пересечения. Нам уже известны графики следующих уравнений:

  1. ax + by + c = 0 — прямая линия.

  2. xy = k — гипербола.

  3. (x a)2 + (y b)2 = R2 — уравнение окружности с центром A(a, b) и радиусом R.

К этому виду приводятся с помощью выделения полных квадратов уравнения вида:

x2 + y2 2ax 2by + c = 0.

  1. ax2 + bx + c = 0 — парабола y = ax2 c вершиной в точке A(m, n), где m = b / 2a, а n = (4ac b2) / 4a.

Пример 11.58. Найдём графически корни системы:

x 2 + y2 2x + 4y 20 = 0,

2x y = 1.

Решение. Выделяя полные квадраты, получаем:

x2 + y2 2x + 4y 20 = (x2 2x +1) + (y2 + 4y + 4) 1 4 20 = (x 1)2 + (y + 2)2 25.

Значит, систему уравнений можно записать так:

( x 1)2 + (y + 2)2 = 25,

2x y = 1.

Графиком первого уравнения является окружность с центром A(1; 2) и радиусом 5. А 2x y = 1 — уравнение прямой, проходящей через точки B(0; 1) и C(2; 5). Строим окружность радиуса 5 с центром в точке A и проводим прямую через точки B и C. Эти линии пересекаются в двух точках M(1; 3) и N(3; 5). Значит решение системы таково: x1 = 1, y1 = 3; x2 = 3, y2 = 5.

Y


C

5


M


B



X


2

0



A

2



Характеристики

Тип файла
Документ
Размер
1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7034
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее