24351-1 (675592)
Текст из файла
Министерство общего и профессионального образования РФ
Муниципальное образовательное учреждение
Гимназия № 12
сочинение
на тему: Уравнения и способы их решения
Выполнил: ученик 10 "А" класса
Крутько Евгений
Проверила: учитель математики Исхакова Гульсум Акрамовна
Тюмень 2001
Содержание
-
План 1
-
Введение 2
-
Основная часть 3
-
Заключение 25
-
Приложение 26
-
Список использованной литературы 29
План.
-
Введение.
-
Историческая справка.
-
Уравнения. Алгебраически уравнения.
а) Основные определения.
б) Линейное уравненение и способ его решения.
в) Квадратные уравнения и способы его решения.
г) Двучленные уравнения способ их решения.
д) Кубические уравнения и способы его решения.
е) Биквадратное уравнение и способ его решения.
ё) Уравнения четвертой степени и способы его решения.
ж) Уравнения высоких степеней и способы из решения.
з) Рациональноное алгебраическое уравнение и способ его
решения.
и) Иррациональные уравнения и способы его решения.
к) Уравнения, содержащие неизвестное под знаком.
абсолютной величины и способ его решения.
-
Трансцендентные уравнения.
а) Показательные уравнения и способ их решения.
б) Логарифмические уравнения и способ их решения.
Введение
Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.
Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.
Математика... выявляет порядок,
симметрию и определенность,
а это – важнейшие виды прекрасного.
Аристотель.
Историческая справка
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.
Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.
Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.
уравнения. Алгебраические уравнения
Основные определения
В алгебре рассматриваются два вида равенств – тождества и уравнения.
Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв 1). Для записи тождества наряду со знаком также используется знак
.
Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,
,
... – или теми же буквами, снабженными индексами:
,
, ... или
,
, ...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:
,
,
, ... – или теми же буквами, снабженными индексами:
,
, ... или
,
, ...).
В общем виде уравнение может быть записано так:
(
,
, ...,
)
.
В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.
Значение неизвестных, обращающие уравнение в тождество, называют решениями уравнения.
Решить уравнение – это значит найти множество его решений или доказать, что решений нет. В зависимости от вида уравнения множество решений уравнения может быть бесконечным, конечным и пустым.
Если все решения уравнения
являются решениями уравнения
, то говорят, что уравнение
есть следствие уравнения
, и пишут
.
Два уравнения
и
называют эквивалентными, если каждое из них является следствие другого, и пишут
.
Таким образом, два уравнения считаются эквивалентными, если множество решений этих уравнений совпадают.
Уравнение
считают эквивалентным двум (или нескольким) уравнениям
,
, если множество решений уравнения
совпадает с объединением множеств решений уравнений
,
.
Н е к о т о р ы е э к в и в а л е н т н ы е у р а в н е н и я:
-
Уравнение
эквивалентно уравнению
, рассматриваемому на множестве допустимых значений искходного уравнения.
-
Уравнение
эквивалентно уравнению
, рассматриваемому на множестве допустимых значений искходного уравнения.
-
эквивалентно двум уравнениям
и
.
-
Уравнение
эквивалентно уравнению
.
-
Уравнение
при нечетном n эквивалентно уравнению
, а при четном n эквивалентно двум уравнениям
и
.
Алгебраическим уравнением называется уравнение вида
,
где – многочлен n-й степени от одной или нескольких переменных.
Алгебраическим уравнением с одним неизвестным называется уравнение, сводящееся к уравнению вида
+
+ ... +
+
,
где n – неотрицательное целое число; коэффициенты многочлена ,
,
, ...,
,
называются коэффициентами (или параметрами) уравнения и считаются заданными; х называется неизвестным и является искомым. Число n называется степенью уравнения.
Значения неизвестного х, обращающие алгебраическое уравнение в тождество, называются корнями (реже решениями) алгебраического уравнения.
Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейное и квадратное уравнения, а также уравнения вида F(х) , где F – одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Так же существуют формулы и для кубического уравнения, но его к простейшим не относят.
Так вот, главная задача при решении любого уравнения – свести его к простейшим.
Все ниже перечисленные уравнения имеют так же и свое графическое решение, которое заключается в том, чтобы представить левую и правую части уравнения как две одинаковые функции от неизвестного. Затем строится график сначала одной функции, а затем другой и точка(и) пересечения двух графиков даст решение(я) исходного уравнения. Примеры графического решения всех уравнений даны в приложении.
Линейное уравнение
Линейным уравнением называется уравнение первой степени.
, (1)
где a и b – некоторые действительные числа.
Линейное уравнение всегда имеет единственный корень , который находится следующим образом.
Прибавляя к обеим частям уравнения (1) число , получаем уравнение
, (2)
эквивалентное уравнению (1). Разделив обе части уравнения (2) на величину , получаем корень уравнения (1):
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.